Comparative study of root and soil microbiological activity in individual and co-cultivation of cabbage (Brassica oleraceae L. var. capitata L.)
Gergana Mladenova
, Milena Yordanova
, Boyka Malcheva
Abstract: A comparative study of root and soil microbiological activity was carried out during independent and co-cultivation of cabbage with other crops: leeks, beans, tagetes, fennel and flower mix. The intercropping of cabbage and flower mix increases the amount of microorganisms in the immediate vicinity of the cabbage roots to the highest degree. The biogenicity of the root zone is the lowest in the variant with cabbage and tagetes. In the independent cultivation of cabbage, a higher value of the total microflora is established compared to the variants with the main cabbage crop and additional tagetes or leek crops. Combining cabbage with flower mix, beans or fennel increased the amount of microorganisms from the rhizoplane and rhizosphere to a higher degree than growing cabbage alone. The main share in the composition of the total microflora is occupied by non-spore-forming bacteria, followed by bacilli. Regrouping was found in the co-cultivation of cabbage and flower mix, and in this variant the amount of spore-forming bacteria was higher than that of non-spore-forming bacteria. Actinomycetes and mold fungi are less represented. Catalase activity was highest in the control, followed by the variant with co-cultivation of cabbage and leek, and lowest in cabbage and flower mix, and cabbage and fennel, depending significantly on the humidity of the variants. Cellulase activity was higher in the variants with crops compared to the control - highest in the co-cultivation of cabbage and leek, and cabbage and tagetes, and lowest in cabbage and beans, depending significantly on the total microflora.
Keywords: enzyme activities; root microflora; soil biogenicity
Citation: Mladenova, G., Yordanova, M., & Malcheva, B. (2024). Comparative study of root and soil microbiological activity in individual and co-cultivation of cabbage (Brassica oleraceae L. var. capitata L.) Bulgarian Journal of Crop Science, 61(2) 37-46 (Bg).
References: (click to open/close) | Al-Daghari, D., Al-Sadi, A., Al-Mahmooli, I., Janke, R., & Velazhahan, R. (2023). Biological control effi¬cacy of indigenous antagonistic bacteria isolated from the rhizosphere of cabbage grown in biofumigated soil against Pythium aphanidermatum damping-off of cucumber. Agriculture, 13(3), 626. DOI: https://doi. org/10.3390/agriculture13030626. Amewowor, D., & Madelin, M. (1991). N umbers of myxomycetes and associated microorganisms in the root zones of cabbage (Brassica oleracea) and broad bean (Vicia faba) in field plots. FEMS Microbiology Ecology, 86, 69-82. Barea, J. M., Pozo, M. J., Azcon, R., & Azcon-Aguilar, C. (2005). Microbial co-operation in the rhizosphere. J. Exp. Bot., 56, 1761–1778. Caravaca, F., Masciandaro G., & Ceccanti, B. (2002). Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment. Soil Tillage Res., 68, 23-30. Curtright, A., & Tiemann, L. (2021). Intercropping increases soil extracellular enzyme activity: A meta-analysis. Agriculture, Ecosystems & Environment. DOI: https://doi.org/10.1016/j.agee.2021.107489. Fan, K., Cardona, C., Li, Y., Shi, Y., Xiang, X., Shen, C., Wang, H., Gilbert, J., & Chu, H. (2017). R hi¬zosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biol. Biochem, 113, 275–284. doi: 10.1016/j.soilbio.06020. Fan, K., Weisenhorn, P., Gilbert, J. A., & Chu, H. (2018). Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol. Biochem., 125, 251–260. DOI: 10.1016/j. soilbio.07, 022. Gols, R., Geem, M., Bullock, J., Martens, H., Wage¬naar, R., Putten, W., & Harvey, J. (2023). Commu¬nities of nematodes, bacteria and fungi differ among soils of different wild cabbage population. European Journal of Soil Biology. DOI: https: //doi.org/10.1016/j. ejsobi.2023.103512. Hawkes, C. V., DeAngelis, K. M., & Firestone, M. K. (2007). Root interactions with soil microbial com¬munities and processes. In: The rhizosphere (pp. 1-29). Academic press. Elsevier, New York. Jones, D. L., Nguyen, C., & Finlay, R. D. (2009). Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil, 321, 5–33. Kang, S., Hamayun, M., Khan, M., Iqbal, A., & Lee, I. (2019). Bacillus subtilis JW1 enhances plant growth and nutrient uptake of Chinese cabbage through gibberellins secretion. Journal of Applied Botany and Food Quality, 92, 172 – 178. DOI: 10.5073/JAB¬FQ.2019.092.023. Khaziev, F. (1976). Enzymatic activity of soils. Nauka, Moskva, 180 (Ru). Ling, N., Wang, T. T., & Kuzyakov, Y. (2022). Rhizo¬sphere bacteriome structure and functions. Nat. Com¬mun., 13, 1–13. DOI: 10.1038/s41467-022-28448-9. Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol., 63, 541–556. Lundberg, D. S., Lebeis, S. L., Paredes, S.H., Your¬stone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Rio, T.G.d., Edgar, R. S., Eickhorst, T., Ley, R., Hugenholtz, P., Tringe, S. G., & Dangle, J. L. (2012). Defining the core Arabi¬dopsis thaliana root microbiome. Nature, 488, 86–90. Malcheva, B., & Naskova, P. (2018). Guide for laboratory exercises in Microbiology. Universitetsko izdatelstvo pri TU-Varna, Varna, 70 (Bg). Malcheva, B., Naskova, P., Plamenov, D. (2019). Inves¬tigation of the influence of mineral nitrogen fertilizers on the microbiological and enzymic activity of soils with rapeseed. Novo znanie, 8-4, 80-90 (Bg). Mendes, R., Garbeva, P. & Raaijmakers, J. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev, 37, 634–663. Mishustin, F., & Emtsev, N. (1989). Microbiology. Kolos, Moskva, 367 (Ru). Mishustin, E., & Runov, E. (1957). The s uccess of the development of the principles of microbiological diag¬nosis of soil condition. Uspekhi sovremennoy biologii, 44, 256-268 (Ru). Paliwoda, D., & Mikiciuk, G. (2020). Use of Rhizosphere Microorganisms in Plant Production – a Review Study. Journal of Ecological Engineering, 21(8), 292-310. DOI: https://doi.org/10.12911/22998993/126597. Panikov, N. S. (1999). Understanding and prediction of soil microbial community dynamics under global change. Applied Soil Ecol., 11, 161-176. Pronk, L., Bakker, P., Keel, C., Maurhofer, M., & Flury, P. (2022). The secret life of plant-beneficial rhizosphere bacteria: insects as alternative hosts. Environmental Microbiology, 24(8), 3273-3289. DOI: 10.1111/1462-2920.15968. Qu, Y., Tang, J., Liu, B., Lyu, H., Duan, Y., Yang, Y., Wang, S., & Li, Z. (2022). Rhizosphere enzyme ac¬tivities and microorganisms drive the transformation of organic and inorganic carbon in saline–alkali soil region. Scientific Reports, 12, 1314. DOI: https://doi. org/10.1038/s41598-022-05218-7. Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Al¬abouvette, C., & Moenne-Loccoz, Y. (2009). The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil, 321, pp. 341–361. Saggar, S., McIntosh, M. D., Hedley, C. B., & Knicker, H. (1999). Changes in soil microbial biomass, metabolic quotient and organic matter turnover under Hieracium (H. pilosella L.). Biol. Fert. Soil, 30, pp. 232-238. Schinner, F., & Sonnletner, R. (1996). Soil ecology: Microbiology and soil enzymatics. Springer-Verlag, Berlin (De). Shaban, N., Bistrichanov, S., Moskova, T., Kadum, E., Mitova, I., Tityanov, M., & Bumov, P. (2014). Vegetable production (main traditional vegetable species). Izdatelska kashta pri Lesotehnicheski uni¬versitet (Bg). Wei, X., Fu, T., He, G., Zhong, Z., Yang, M., Lou, F., & He, T. (2023). Characteristics of rhizosphere and bulk soil microbial community of Chinese cabbage (Bras¬sica campestris) grown in Karst area. Frontiers in Microbiology, 14. DOI: 10.3389/fmicb.2023.1241436. Whipps, J. M. (2001). Microbial interactions and bio¬control in the rhizosphere. Journal of experimental Botany, 52(suppl_1), 487-511. Zhang, K., Adams, J. M., Shi, Y., Yang, T., Sun, R., He, D., ... & Chu, H. (2017). Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil. Envi-ronmental Microbiology, 19(9), 3649-3659.
|
|
| Date published: 2024-04-25
Download full text