Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267. Alsanius, B. W. & Wohanka, W. (2019). Root Zone Microbiology of Soilless Cropping Systems. Chapter 5, pp. 149–194 In: Raviv, M., Lieth, J.H., Bar-Tal, A., Eds.; Soilless Culture, 2nd ed., Elsevier, Boston, MA, USA. DOI:10.1016/B978-0-444-63696-6.00005-0. Asran, A. & Abd-Elsalam, K. A. (2020). Top Three Plant Pathogenic Pythium Species. In: Rai, M., Abd-Elsalam, K.A., Ingle, A.P., (eds.) Pythium: Diagnosis, Diseases and Management. CRC Press, pp. 77-91, 386 p. Benitez, M. T., Ana, M., Rincón, M., Carmen, L. A. & Codón, C. (2004). Biocontrol mechanisms of Trichoderma strains. International Journal of Microbiology, 7: 249-260. Chatterton, S., Jayaraman, J. & Punja, Z. K. (2008). Colonization of cucumber plants by the biocontrol fungus Clonostachys rosea f. catenulate. Biological Control, 46: 267-278. Chen, L., Hao, D., Dou, K., Lang, B., Wang, X., Li, Y. & Chen, J. (2023). Preparation of High Water-Soluble Trichoderma Co-Culture Metabolite Powder and Its Effects on Seedling Emergence Rate and Growth of Crops. J. Fungi, 9, 767. https://doi.org/10.3390/jof9070767 Chen, D., Hou, Q., Jia, L. & Sun, K. (2021). Combined Use of Two Trichoderma Strains to Promote Growth of Pakchoi (Brassica chinensis L.). Agronomy, 11, 726. https://doi.org/10.3390/agronomy11040726 Cherif, M. & Belanger, R. R. (1992). Use of potassium silicate amendments in recirculating nutrient solutions to suppress Pythium ultimum on Long English Cucumber. Plant Disease, 76: 1008-1011. Clemantis, F. A., Minuto, A., Gullino, M. L., & Garibaldi, A. (2009). Suppressiveness to Fusarium oxysporum f. sp. radicis-lycopersici in re-used perlite and perlite-peat substrates in soilless tomatoes. Biological Control, 48, 108-114. Favrin, R. J., Rahe, J. E., & Mauza, B. (1988). Pythium spp. associated with crown rot of cucumbers in British Columbia greenhouses. Plant Disease, 72: 683-687. Folman, L. B., Postma, J. & Van Veen, J. A. (2003). Characterization of Lysobacter enzymogenes (Christensen and Cook, 1978) strain 3.1T8, a powerful antagonist of fungal diseases of cucumber. Microbiological Research, 158: 107-115. Gardiner, W.P. (1997). Statistics for the biosciences: data analysis using minitab software. Prentice Hall, London, 416 p. Goldberg, N. P., Stanghellini, M. E., & Rasmussen, S. L. (1992). Filtration as a method for controlling Pythium root rot of hydroponically grown cucumbers. Plant Disease, 76: 777-779. Gull, C., Labuschagne, N., & Botha, W. J. (2004). Pythium species associated with wilt and root rot of hydroponically grown crops in South Africa. African Plant Protection, 10: 109-116. Hao, D., Lang, B., Wang, Y. Liu, X., & Chen, T. (2022) Designing synthetic consortia of Trichoderma strains that improve antagonistic activities against pathogens and cucumber seedling growth. Microbial Cell Factories, 21, 234. doi.org/10.1186/s12934-022-01959-2 Herrero, M. L., Hermansen, A., & Elen, O. N. (2003). Occurrence of Pythium spp. and Phytophthora spp. in Norwegian greenhouses and their pathogenicity on cucumber seedlings, Journal of Phytopathology, 151, 36–41. doi:10.1046/j.1439-0434.2003.00676.x Jenkins, S. F., & Averre, C. W. (1983). Root diseases of vegetables in hydroponic culture systems in North Carolina greenhouses. Plant Disease, 67: 968-970. Köhl, J., Kolnaar, R. & Ravensberg, W. J. (2019). Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Frontiers in Plant Science, 10, 19 p. doi:10.3389/fpls.2019.00845 Liu, J. B., Gilardi, G., Gullino, M. L., & Garibaldi, A. (2009). Effectiveness of Trichoderma spp. obtained from re-used soilless substrates against Pythium ultimum on cucumber seedlings. Journal of Plant Diseases and Protection, 116: 156-163. Maucieri, C., Nicoletto, C., Os, E.V., Anseeuw, D., Havermaet, R.V., & Junge, R. (2019). Hydroponic Technologies. In: S. Goddek, A. Joyce, B. Kotzen, & G.M. Burnell (Eds.), Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future (pp. 77-110). Springer International Publishing, 619 p. https://doi.org/10.1007/978-3-030-15943-6_4. McCullagh, M., Utkhede, R., Menzies, J. G., Punja, Z. K., & Paulitz, T. C. (1996). Evaluation of plant growth-promoting rhizobacteria for biological control of Pythium root rot of cucumbers grown in rockwool and effects on yield. European Journal of Plant Pathology, 102: 747-755. doi:10.1007/bf01877149 Menzies, J. G., Ehret, D. L., Koch, C., Hall, J. W., Seifert, K. A., Bissett, J., & Barr, D. J. (2005). Fungi associated with roots of cucumber grown in different greenhouse root substrates. Canadian Journal of Botany, 83: 80-92. doi:10.1139/b04-153 Minuto, A., Clematis, F., Gullino, M. L., & Garibaldi, A. (2007). Induced suppressiveness to Fusarium oxysporus f.sp. radicis-lycopersici in rockwool substrate used in closed soilless systems. Phytoparasitica, 35: 77-85. Moulin, E., Lemanceau, P., & Alabouvette, C. (1994). Pathogenicity of Pythium species on cucumber in peat-sand, rockwool and hydroponics. European Journal of Plant Pathology, 100: 3-17. Paulitz, T. (1997). Biological control of root pathogens in soilless and hydroponic systems. HortScience, 32: 193-96. Paulitz, T. C., Zhou, T. & Rankin, L. (1992). Selection of rhizosphere bacteria for biological control of Pythium aphanidermatum on hydroponically grown cucumber. Biological Control, 2, 226–237. doi:10.1016/1049-9644(92)90063-j. Postma J., Bonants P. J. M., & van Os E. A. (2001). Population dynamics of Pythium aphanidermatum in cucumber grown in closed systems, Mededelingen - Universiteit Gent, Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, 66: 47-59. Postma J., Geraats B. P. J., Pastoor R., & van Elsas J. D. (2005). Characterization of the microbial community involved in the suppression of Pythium aphanidermatum in cucumber grown on rockwool, Phytopathology, 95, 808-818. Postma J., Stevens L .H., Wiegers G. L., Davelaar E., & Nijhuis E. H. (2009). Biological control of Pythium aphanidermatum in cucumber with a combined application of Lysobacter enzymogenes strain 3.1T8 and chitosan, Biological Control, 48, 301-309. Postma, J., van Os, E., & Bonants, P. J. M. (2008). Pathogen detection and management strategies in soilless plant growing systems, Chapter 10, pp. 425-457, In: Raviev, M., Lieth, J.H. (eds.), Soilless culture: theory and practice. Amsterdam: Elsevier - ISBN 9780444529756. Punja, Z. K., & Parker, M. (2000). Development of Fusarium root and stem rot, a new disease on greenhouse cucumber in British Columbia, caused by Fusarium oxysporum f. sp. radicis-cucumerinum. Canadian Journal of Plant Pathology, 22, 349-363. Punja, Z. K., Tirajoh, A., Collyer, D., & Ni, L. (2019). Efficacy of Bacillus subtilis strain QST 713 (Rhapsody) against four major diseases of greenhouse cucumbers. Crop Protection, 124, 104845. doi:10.1016/j.cropro.2019.104845. Punja, Z. K., & Yip, R. (2003). Biological control of damping-off and root rot caused by Pythium aphanidermatum on greenhouse cucumbers. Canadian Journal of Plant Pathology, 25, 411-417. Puyam, A. (2016). Advent of Trichoderma as a bio-control agent-A review. Journal of Applied and Natural Science, 8: 1100-1109. Available at: https://1library.net/document/qojjrg5z-advent-trichoderma-bio-control-agent-review.html. Rafin, C. & Tirilly, Y. (1995). Characteristics and pathogenicity of Pythium ssp. associated with root rot of tomatoes in soilless culture in Brittany, France. Plant Pathology, 44: 779-785. Rivas-García, T., González-Estrada, R. R., Chiquito-Contreras, R. G., Reyes-Pérez, J. J., González-Salas, U., Hernández-Montiel, L. G., & Murillo-Amador, B. (2020). Biocontrol of Phytopathogens under Aquaponics Systems. Water, 12: 2021, 15 p. doi: 10.3390/w12072061. Rose, S., Yip, R. & Punja, Z. K. (2004). Biological control of Fusarium and Pythium root rots on greenhouse cucumbers grown in rockwool. Acta Horticulturae, 635: 73-78. doi: 10.17660/ actahortic.2004.635.9 Stanghellini, M. E., White, J. G., Tomlinson, J. A. & Clay, C. (1988). Root rot of hydroponically grown cucumbers caused by zoospore-producing isolates of Pythium intermedium. Plant Disease, 72: 358-359. Sutton, J. C., Sopher, C. R., Owen-Going, T. N., Liu, W., Grodzinski, B., Hall, J. C., & Benchimol, R. L. (2006). Etiology and epidemiology of Pythium root rot in hydroponic crops: current knowledge and perspectives. Summa Phytopathologica, 32: 307-321. doi:10.1590/s0100-54052006000400001. Vallance, J., Déniel, F., Floch, G., Guérin-Dubrana, L., Blancard, D., & Rey, P. (2011). Pathogenic and beneficial microorganisms in soilless cultures. Agronomy for Sustainable Development, 31: 191-203. doi:10.1051/agro/2010018. van der Gaag D. J., & Wever G. (2005). Conduciveness of different soilless growing media to Pythium root and crown rot of cucumber under near-commercial conditions. Europen Journal of Plant Pathology, 112: 31-41. van der Plaats-Niterink, A. J. (1981). Monograph of the genus Pythium. Studies in Mycology, 21: 1-242. Vatchev, T. D. (2007). First report of Fusarium root and stem rot of greenhouse cucumber caused by Fusarium oxysporum f. sp. radicis-cucumerinum in Bulgaria. Bulgarian Journal of Agricultural Science, 13, 151-152. Vatchev, T. D. (2015). Fusarium root and stem rot of greenhouse cucumber: aerial distribution of inoculum. Bulgarian Journal of Agricultural Science, 21, 656-660. Wong C. K. F., Saidi, N. B., Vadamalai, G., Teh, C. Y., & Zulperi, D. (2019). Effect of bioformulations on the biocontrol efficacy, microbial viability and storage stability of a consortium of biocontrol agents against Fusarium wilt of banana. Journal of Applied Microbiology, 127, 544-555. Yedidia, I., Benhamou, N., Kapulnik, Y., & Chet, I. (2000). Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiology and Biochemistry, 38, 863-873. Zhao, Z. H., Kusakari, S. I., Okada, K., Miyazaki, A., & Osaka, T. (2000). Control of Pythium root rot on hydroponically grown cucumbers with silver-coated cloth. Bioscience, Biotechnology and Biochemistry, 64: 1515–1518. doi:10.1271/bbb.64.1515
|
|