Биологично базиран подход за борба с питийно кореново гниене по оранжерийни краставици, отглеждани в каменна вата
Ценко Въчев, Георги Пренгов, Иво Янашков
Abstract: Изследването проследява ефекта от приложение на консорциум от четири вида Trichoderma, в т.ч. T. asperellum, T. koningii, T. polysporum и Trichoderma gamsii, върху питийно кореново гниене по оранжерийни краставици, отглеждани в каменна вата. Провеждани бяха опити (1) в експериментална хидропонна система, изградена от използвани матраци каменна вата, „естествено” заразени с Pythium spp. и допълнително инокулирани с P. aphanidermatum, P. ultimum и групи G, и F на патогена; и (2) в производствена оранжерия, където краставичните растения (c. Boncanale) бяха отглеждани върху еднократно използван субстрат от същия тип. Многокомпонентният биоагент беше произвеждан върху автоклавирани ечемичени зърна. Формираната спорова маса беше суспендирана във фертигационен разтвор, двукратно филтрирана и довеждана до 5.0-7.5 x 107 спори ml-1. По 150 ml бяха внасяни около корените на растенията 0, 1, 2 или 3 пъти. Третирането беше осъществявано чрез ръчна поливка в експерименталната система, като първото третиране беше осъществявано на седмия ден след сеитбата, а другите две следваха през интервали от 14 дни. Третирането в производствената оранжерия беше провеждано чрез капковата инсталация: първо третиране – непосредствено след разсаждане, а останалите през интервали от 30 дни. Значително редуциране на честотата на срещане на болестта беше отбелязано след двукратно или трикратно третиране: общият брой увехнали и загинали растения беше редуциран съответно с 50% и 73% в експериментално изградената система и с 60% и 40% в производствените опити. Това изследване предлага иновативен подход за биоконтрол, включващ съвместно култивиране на биоагентите, приготвяне на спорова суспензия директно във фертигационния разтвор и приложение до кореновата система на растенията по поливната капковата система.
Keywords: биологична борба; оранжерийни краставици; Pythium spp.; безпочвена хидропонна система; Trichoderma spp.
Citation: Vatchev, T., Prengov, G., & Yanashkov, I. (2024). Biologically based approach to controlling Pythium root rot of greenhouse cucumbers grown in rockwool system. Bulgarian Journal of Crop Science, 61(4) 3-15 (Bg).
References: (click to open/close) | Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267. Alsanius, B. W. & Wohanka, W. (2019). Root Zone Microbiology of Soilless Cropping Systems. Chapter 5, pp. 149–194 In: Raviv, M., Lieth, J.H., Bar-Tal, A., Eds.; Soilless Culture, 2nd ed., Elsevier, Boston, MA, USA. DOI:10.1016/B978-0-444-63696-6.00005-0. Asran, A. & Abd-Elsalam, K. A. (2020). Top Three Plant Pathogenic Pythium Species. In: Rai, M., Abd-Elsalam, K.A., Ingle, A.P., (eds.) Pythium: Diagnosis, Diseases and Management. CRC Press, pp. 77-91, 386 p. Benitez, M. T., Ana, M., Rincón, M., Carmen, L. A. & Codón, C. (2004). Biocontrol mechanisms of Trichoderma strains. International Journal of Microbiology, 7: 249-260. Chatterton, S., Jayaraman, J. & Punja, Z. K. (2008). Colonization of cucumber plants by the biocontrol fungus Clonostachys rosea f. catenulate. Biological Control, 46: 267-278. Chen, L., Hao, D., Dou, K., Lang, B., Wang, X., Li, Y. & Chen, J. (2023). Preparation of High Water-Soluble Trichoderma Co-Culture Metabolite Powder and Its Effects on Seedling Emergence Rate and Growth of Crops. J. Fungi, 9, 767. https://doi.org/10.3390/jof9070767 Chen, D., Hou, Q., Jia, L. & Sun, K. (2021). Combined Use of Two Trichoderma Strains to Promote Growth of Pakchoi (Brassica chinensis L.). Agronomy, 11, 726. https://doi.org/10.3390/agronomy11040726 Cherif, M. & Belanger, R. R. (1992). Use of potassium silicate amendments in recirculating nutrient solutions to suppress Pythium ultimum on Long English Cucumber. Plant Disease, 76: 1008-1011. Clemantis, F. A., Minuto, A., Gullino, M. L., & Garibaldi, A. (2009). Suppressiveness to Fusarium oxysporum f. sp. radicis-lycopersici in re-used perlite and perlite-peat substrates in soilless tomatoes. Biological Control, 48, 108-114. Favrin, R. J., Rahe, J. E., & Mauza, B. (1988). Pythium spp. associated with crown rot of cucumbers in British Columbia greenhouses. Plant Disease, 72: 683-687. Folman, L. B., Postma, J. & Van Veen, J. A. (2003). Characterization of Lysobacter enzymogenes (Christensen and Cook, 1978) strain 3.1T8, a powerful antagonist of fungal diseases of cucumber. Microbiological Research, 158: 107-115. Gardiner, W.P. (1997). Statistics for the biosciences: data analysis using minitab software. Prentice Hall, London, 416 p. Goldberg, N. P., Stanghellini, M. E., & Rasmussen, S. L. (1992). Filtration as a method for controlling Pythium root rot of hydroponically grown cucumbers. Plant Disease, 76: 777-779. Gull, C., Labuschagne, N., & Botha, W. J. (2004). Pythium species associated with wilt and root rot of hydroponically grown crops in South Africa. African Plant Protection, 10: 109-116. Hao, D., Lang, B., Wang, Y. Liu, X., & Chen, T. (2022) Designing synthetic consortia of Trichoderma strains that improve antagonistic activities against pathogens and cucumber seedling growth. Microbial Cell Factories, 21, 234. doi.org/10.1186/s12934-022-01959-2 Herrero, M. L., Hermansen, A., & Elen, O. N. (2003). Occurrence of Pythium spp. and Phytophthora spp. in Norwegian greenhouses and their pathogenicity on cucumber seedlings, Journal of Phytopathology, 151, 36–41. doi:10.1046/j.1439-0434.2003.00676.x Jenkins, S. F., & Averre, C. W. (1983). Root diseases of vegetables in hydroponic culture systems in North Carolina greenhouses. Plant Disease, 67: 968-970. Köhl, J., Kolnaar, R. & Ravensberg, W. J. (2019). Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Frontiers in Plant Science, 10, 19 p. doi:10.3389/fpls.2019.00845 Liu, J. B., Gilardi, G., Gullino, M. L., & Garibaldi, A. (2009). Effectiveness of Trichoderma spp. obtained from re-used soilless substrates against Pythium ultimum on cucumber seedlings. Journal of Plant Diseases and Protection, 116: 156-163. Maucieri, C., Nicoletto, C., Os, E.V., Anseeuw, D., Havermaet, R.V., & Junge, R. (2019). Hydroponic Technologies. In: S. Goddek, A. Joyce, B. Kotzen, & G.M. Burnell (Eds.), Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future (pp. 77-110). Springer International Publishing, 619 p. https://doi.org/10.1007/978-3-030-15943-6_4. McCullagh, M., Utkhede, R., Menzies, J. G., Punja, Z. K., & Paulitz, T. C. (1996). Evaluation of plant growth-promoting rhizobacteria for biological control of Pythium root rot of cucumbers grown in rockwool and effects on yield. European Journal of Plant Pathology, 102: 747-755. doi:10.1007/bf01877149 Menzies, J. G., Ehret, D. L., Koch, C., Hall, J. W., Seifert, K. A., Bissett, J., & Barr, D. J. (2005). Fungi associated with roots of cucumber grown in different greenhouse root substrates. Canadian Journal of Botany, 83: 80-92. doi:10.1139/b04-153 Minuto, A., Clematis, F., Gullino, M. L., & Garibaldi, A. (2007). Induced suppressiveness to Fusarium oxysporus f.sp. radicis-lycopersici in rockwool substrate used in closed soilless systems. Phytoparasitica, 35: 77-85. Moulin, E., Lemanceau, P., & Alabouvette, C. (1994). Pathogenicity of Pythium species on cucumber in peat-sand, rockwool and hydroponics. European Journal of Plant Pathology, 100: 3-17. Paulitz, T. (1997). Biological control of root pathogens in soilless and hydroponic systems. HortScience, 32: 193-96. Paulitz, T. C., Zhou, T. & Rankin, L. (1992). Selection of rhizosphere bacteria for biological control of Pythium aphanidermatum on hydroponically grown cucumber. Biological Control, 2, 226–237. doi:10.1016/1049-9644(92)90063-j. Postma J., Bonants P. J. M., & van Os E. A. (2001). Population dynamics of Pythium aphanidermatum in cucumber grown in closed systems, Mededelingen - Universiteit Gent, Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, 66: 47-59. Postma J., Geraats B. P. J., Pastoor R., & van Elsas J. D. (2005). Characterization of the microbial community involved in the suppression of Pythium aphanidermatum in cucumber grown on rockwool, Phytopathology, 95, 808-818. Postma J., Stevens L .H., Wiegers G. L., Davelaar E., & Nijhuis E. H. (2009). Biological control of Pythium aphanidermatum in cucumber with a combined application of Lysobacter enzymogenes strain 3.1T8 and chitosan, Biological Control, 48, 301-309. Postma, J., van Os, E., & Bonants, P. J. M. (2008). Pathogen detection and management strategies in soilless plant growing systems, Chapter 10, pp. 425-457, In: Raviev, M., Lieth, J.H. (eds.), Soilless culture: theory and practice. Amsterdam: Elsevier - ISBN 9780444529756. Punja, Z. K., & Parker, M. (2000). Development of Fusarium root and stem rot, a new disease on greenhouse cucumber in British Columbia, caused by Fusarium oxysporum f. sp. radicis-cucumerinum. Canadian Journal of Plant Pathology, 22, 349-363. Punja, Z. K., Tirajoh, A., Collyer, D., & Ni, L. (2019). Efficacy of Bacillus subtilis strain QST 713 (Rhapsody) against four major diseases of greenhouse cucumbers. Crop Protection, 124, 104845. doi:10.1016/j.cropro.2019.104845. Punja, Z. K., & Yip, R. (2003). Biological control of damping-off and root rot caused by Pythium aphanidermatum on greenhouse cucumbers. Canadian Journal of Plant Pathology, 25, 411-417. Puyam, A. (2016). Advent of Trichoderma as a bio-control agent-A review. Journal of Applied and Natural Science, 8: 1100-1109. Available at: https://1library.net/document/qojjrg5z-advent-trichoderma-bio-control-agent-review.html. Rafin, C. & Tirilly, Y. (1995). Characteristics and pathogenicity of Pythium ssp. associated with root rot of tomatoes in soilless culture in Brittany, France. Plant Pathology, 44: 779-785. Rivas-García, T., González-Estrada, R. R., Chiquito-Contreras, R. G., Reyes-Pérez, J. J., González-Salas, U., Hernández-Montiel, L. G., & Murillo-Amador, B. (2020). Biocontrol of Phytopathogens under Aquaponics Systems. Water, 12: 2021, 15 p. doi: 10.3390/w12072061. Rose, S., Yip, R. & Punja, Z. K. (2004). Biological control of Fusarium and Pythium root rots on greenhouse cucumbers grown in rockwool. Acta Horticulturae, 635: 73-78. doi: 10.17660/ actahortic.2004.635.9 Stanghellini, M. E., White, J. G., Tomlinson, J. A. & Clay, C. (1988). Root rot of hydroponically grown cucumbers caused by zoospore-producing isolates of Pythium intermedium. Plant Disease, 72: 358-359. Sutton, J. C., Sopher, C. R., Owen-Going, T. N., Liu, W., Grodzinski, B., Hall, J. C., & Benchimol, R. L. (2006). Etiology and epidemiology of Pythium root rot in hydroponic crops: current knowledge and perspectives. Summa Phytopathologica, 32: 307-321. doi:10.1590/s0100-54052006000400001. Vallance, J., Déniel, F., Floch, G., Guérin-Dubrana, L., Blancard, D., & Rey, P. (2011). Pathogenic and beneficial microorganisms in soilless cultures. Agronomy for Sustainable Development, 31: 191-203. doi:10.1051/agro/2010018. van der Gaag D. J., & Wever G. (2005). Conduciveness of different soilless growing media to Pythium root and crown rot of cucumber under near-commercial conditions. Europen Journal of Plant Pathology, 112: 31-41. van der Plaats-Niterink, A. J. (1981). Monograph of the genus Pythium. Studies in Mycology, 21: 1-242. Vatchev, T. D. (2007). First report of Fusarium root and stem rot of greenhouse cucumber caused by Fusarium oxysporum f. sp. radicis-cucumerinum in Bulgaria. Bulgarian Journal of Agricultural Science, 13, 151-152. Vatchev, T. D. (2015). Fusarium root and stem rot of greenhouse cucumber: aerial distribution of inoculum. Bulgarian Journal of Agricultural Science, 21, 656-660. Wong C. K. F., Saidi, N. B., Vadamalai, G., Teh, C. Y., & Zulperi, D. (2019). Effect of bioformulations on the biocontrol efficacy, microbial viability and storage stability of a consortium of biocontrol agents against Fusarium wilt of banana. Journal of Applied Microbiology, 127, 544-555. Yedidia, I., Benhamou, N., Kapulnik, Y., & Chet, I. (2000). Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiology and Biochemistry, 38, 863-873. Zhao, Z. H., Kusakari, S. I., Okada, K., Miyazaki, A., & Osaka, T. (2000). Control of Pythium root rot on hydroponically grown cucumbers with silver-coated cloth. Bioscience, Biotechnology and Biochemistry, 64: 1515–1518. doi:10.1271/bbb.64.1515
|
|
| Date published: 2024-08-29
Download full text