Evaluation with physiological, cytogenetic, biochemical and anatomical aspects of dose-dependent inhibitory activity of jasmonic acid, a lipidderived growth regulator, in onion root tip cells
Dilek Çavuşoğlu
, Kürşat Çavuşoğlu
Abstract: The effects of different doses of exogenous jasmonic acid (JA), were investigated on physiological parameters such as germination percentage, root length, root number and fresh weight, cytogenetic parameters such as mitotic index (MI), micronucleus (MN), frequency and chromosome aberration (CA), biochemical parameters as such superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and proline (PR) contents of Allium cepa L., known as onion. In addition, the changes in the root anatomical structures of the bulbs were examined under the microscope by taking cross-sections. Onion bulbs were divided into four groups as one control (C) and three treatments. The bulbs of the C group were kept in cuvettes containing tap water for 7 days and the bulbs of the treatment groups were kept in cuvettes containing 100 μM, 250 μM and 500 μM JA. JA administration caused a decrease in all physiological parameters examined, an increase in the frequency of MN and CA, and a reduce in MI compared to group C. In addition, the mentioned application caused a dose-dependent increase in CAT and SOD activities and MDA and PR contents compared to group C. Moreover, 500 μM JA, the highest application dose, caused quite significant damages such as giant cell nucleus, unclear vascular tissue, binuclealar cell and accumulation of some substances in the cells of the epidermis/cortex in root anatomical structure of the bulbs. In summary, it was concluded that JA is a chemical with inhibitory functions and the Allium cepa test is a useful bioindicator for monitoring these effects.
Keywords: antioxidant activity; germination of bulb; jasmonic acid; membrane damage; mitotic division; toxicity test
Citation: Çavuşoğlu, D., & Çavuşoğlu, K. (2024). Evaluation with physiological, cytogenetic, biochemical and anatomical aspects of dose-dependent inhibitory activity of jasmonic acid, a lipid-derived growth regulator, in onion root tip cells. Bulgarian Journal of Crop Science, 61(3) 75-91.
References: (click to open/close) | Advanci, N. C., Luche, D. D., Goldman, G. H., & Gold¬man, M. H. S. (2010). Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genetics and Molecular Research, 9, 484‒505. Ahmad, P., Rasool, S., Gul, A., Akram, N. A., Ashraf, M., & Gucel, S. (2016). Jasmonates: multifunctional roles in stress tolerance. Frontiers in Plant Science, 7, 813‒828. Andrade, L. F., Davide, L. C., & Gedraite, L. S. (2010). The effect of cyanide compounds, fluorides, alumi¬num, and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa. Ecotoxicology and Environmental Safety, 73, 626‒631. Bachmann, A., Hause, B., Maucher, H., Garbe, H., Vo¬ros, K., Weichert, H., Wasternack, C., & Feusser, I. (2002). Jasmonate-induced lipid peroxidation in barley leaves initiated by distinct 13‒LOX forms of chloro¬plasts. Biological Chemistry, 383, 1645‒1657. Bahmani, K., Noori, S. A. S., Darbandi, A. I., & Ak¬bari, A. (2015). Molecular mechanisms of plant salin¬ity tolerance: a review. Australian Journal of Crop Science, 9(4), 321. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205‒207. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276‒287. Beers, R. F., & Sizer, I. W. (1952). Colorimetric method for estimation of catalase. Journal of Biological Chem¬istry, 195, 133‒139. Bialecka, B., & Kepczynski, J. (2003). R egulation of α-amylase activitiy in Amaranthus caudatus seeds by methyl jasmonate, gibberellin A3, benzyladenine and ethylene. Plant Growth Regulation, 39, 51‒56. Bin, J. H., Huang, S. Q., He, S. C., & He, L. H. (2001). Effect of methyl jasmonate on the germination and the degradation of storage reserve in rice seed. Acta Botanica Sinica, 43, 578‒585. Bogatek, R., Come, D., Corbineau, F., Ranjan, R., & Lewak, S. (2002). Jasmonic acid affect dormancy and sugar catabolism in germinating apple embryos. Plant Physiology and Biochemistry, 40, 167‒173. Cavusoglu, D. (2022). Powerful toxic activity of citri¬nin, a fungal phytotoxin, and its mode of action in onion cells. Environmental Science and Pollution Research, 29(4), 6205‒6218. Cavusoglu, K., & Kabar, K. (2006). Does jasmonic acid prevent the germination of barley seeds. Süleyman Demirel University Faculty of Arts and Science Jour¬nal of Science, 1-12, 35‒41. Cavusoglu, K., Kabar, K., & Kilic, S. (2007). Effects of some plant growth regulators on jasmonic acid induced inhibition of seed germination and seedling growth of barley. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 2, 53‒59. Cavusoglu, K., Kalefetoglu Macar, T., Macar, O., Ca¬vusoglu, D., & Yalcin, E. (2022). Comparative investigation of toxicity induced by UV-A and UV-C radiation using Allium test. Environmental Science and Pollution Research, 29(23), 33988–33998. Chaparro, T. R., Botta, C. M., & Pires, E. C. (2010). Biodegradability and toxicity assessment of bleach plant effluents treated anaerobically. Water Science & Technology, 62, 1312‒1319. Chen, Z., Zhang, S., Liang, Y., Zhang, F., Xu, F., & Quan, Q. (2004). Effect of bagging on greenhouse cucumber. Chinese Journal of Applied Ecology, 15, 1297‒1300. Chong, T. M., Abdullah, M. A., Fadzillah, N. M., Lai, O. M. & Lajis, N. H. (2005). Jasmonic acid elicitation of anthraquinones with some associates enzymic and nonenzymic antioxidant responses in Morinda ellip¬tica. Biochemical Journal, 36, 469‒477. Creelman, R. A. & Mullet, J. E. (1997). Oligosaccharins, brassinolides, and jasmonates: nontraditional regula¬tors of plant growth, development, and gene expres¬sion. The Plant Cell, 9, 1211‒1223. Dar, T. A., Moinuddin Khan, M. M. A., Hakeem, K. R., & Jaleel, H. (2015). Jasmonates counter plant stress: a review. Environmental and Experimental Botany, 115, 49‒57. Dinakar, C., Abhaypratap, V., Yearla, S. R., Raghav¬endra, A. S., & Padmasree, K. (2010). Importance of ROS and antioxidant system during the beneficial interactions of mitochondrial metabolism with photo¬synthetic carbon assimilation. Planta, 231, 461‒474. El-Ghamery, A. A., El-Kholy, M. A., & Abou El- Yousser, M. A. (2003). Evaluation o f c ytological e f¬fects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutation Research, 537, 29‒41. Engelberth, J., Koch, T., Schüler, G., Bachmann, N., Rechtenbach, J., & Boland, W. (2001). Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiology, 125, 369‒377. Fenech, M. (2000). The in vitro micronucleus technique. Mutation Research, 455, 81‒95. Fenech, M., & Crott, J. W. (2002). Micronuclei, nucleo¬plasmic bridges and nuclear buds induced in folic acid deficient human lymphocytes-evidence for breakage-fusion-bridge cycles in the cytokinesis block micro¬nucleus assay. Mutation Research, 504, 131‒136. Ferguson, L., & Grafton-Cardwell, E. E. (2014). Citrus production manual, University of California: Agricul¬ture and Natural Resources, Richmond CA. Fernandes, T. C. C., Mazzeo, D. E. C., & Marin Morales, M. A. (2007). M echanism o f m icronuclei formation in polyploidizated cells of A. cepa exposed to trifluralin herbicide. Pesticide Biochemistry and Physiology, 88, 252‒259. Fiskesjo, G. (1985). The Allium test as a standard in en¬viron-1535 mental monitoring. Hereditas, 102, 99‒112. George, E. F., Hall, M. A., & De Klerk, G. (2008). Plant growth regulators I: introduction; auxins, their ana¬logues and inhibitors. In: Springer, Netherlands, Ed., Plant Propagation by Tissue Culture. The Netherlands: Dordrecht, 175‒204. Ghasemi Pirbalouti, A., Sajjadi, S. E., & Parang, K. (2014). A review (research and patents) on jasmonic acid and its derivatives. Archives of Pharmacal Re¬search, 347, 229‒239. Grant, W. F. (1999). Higher plant assays for the detec¬tion of chromosomal aberrations and gene mutations-a brief historical back ground on their use for screening and monitoring environmental chemicals. Mutation Research, 426, 107‒112. Han, Y., Chen, C., Yan, Z., Li, J., & Wang, Y. (2019). The methyl jasmonate accelerates the strawberry fruits ripening process. Scientia Horticulturae, 249, 250‒256. Harashima, H., & Schnittger, A. (2010). The integration of cell division, growth and differentiation. Current Opinion in Plant Biology, 13, 66‒74. Huang, H., Liu, B., Liu, L., & Song, S. (2017). Jasmonate action in plant growth and development. Journal of Experimental Botany, 68, 1349‒1359. Hung, K. T., & Kao, C. H. (1998). Involvement of lipid peroxidation in methyl jasmonate-promoted senes¬cence in detached rice leaves. Plant Growth Regula¬tion, 24, 17‒21. Janero, D. R. (1990). Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxida¬tion and peroxidative tissue injury. Free Radical Biol¬ogy and Medicine, 9, 515‒540. Jung, S. (2004). Effect of chlorophyll reduction in Arabi¬dopsis thaliana by methyl jasmonate or norflurazon on antioxidant systems. Plant Physiology and Biochemis¬try, 42, 225‒231. Kalcheva, V. P., Dragoeva, A. P., Kalchev, K. N., & Enchev, D. D. (2009). Cytotoxic and genotoxic effects of Br-containing oxaphosphole on Allium cepa L. root tip cells and mouse bone marrow cells. Genetics and Molecular Biology, 32, 389‒393. Kazan, K. (2015). Diverse roles of jasmonates and ethyl¬ene in abiotic stress tolerance. Trends in Plant Science, 20, 219‒229. Kilic, S., Cavusoglu, K., & Kabar, K. (2008). Effects of jasmonic acid on the root, stem and leaf anatomy of radish seedlings. Journal of Applied Biological Sci¬ences, 2, 75‒78. Krupina, M. V., & Dathe, W. (1991). Occurrence of jasmonic acid in the red alga Gelidium latifolium. Zeitschrift für Naturforschung, 46, 1127‒1129. Kumari, G. J., & Sudhakar, C. (2003). Effects of jas¬monic acid on groundnut during early seedling growth. Biologia Plantarum, 47, 453‒456. Kumari, P., Reddy, C. R., & Bhavanath, J. H. A. (2015). Methyl jasmonate-induced lipidomic and biochemical alterations in the intertidal macroalga Gracilaria dura (Gracilariaceae, Rhodophyta). Plant and Cell Physiol¬ogy, 56, 1877‒1889. Kurowska, M. M., Daszkowska-Golec, A., Gajecka, M., Koscielniak, P., Bierza, W., & Szarejko, I. (2020). Methyl jasmonate affects photosynthesis efficiency, expression of HvTIP genes and nitrogen homeostasis in barley. International Journal of Molecular Sciences, 21, 4335‒4357. Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: a review on its application. Mutation Research, 82, 71‒81. Liu, X., Chi, H., Yue, M., Zhang, X., Li, W., & Jia, E. (2012). The regulation of exogenous jasmonic acid on UV-B stress tolerance in wheat. Journal of Plant Growth Regulation, 31, 436‒447. Luo, H., Heb, W., Lib, D., Baoa, Y., Riazb, A., Xiaob, Y., Songb, J., & Liub, C. (2020). Effect of methyl jasmonate on carotenoids biosynthesis in germinated maize kernels. Food Chemistry, 307, 12525‒12533. Mahfouz, H. M., Barakat, H. M., Halem, A. S., & El- Hahdy, M. M. (2014). Effects of jasmonic and salicylic acids on cell division and cell cycle progression. Egyp¬tian Journal of Botany, 54, 185‒201. Marasek-Ciolakowska, A., Saniewski, M., Dziurka, M., Kowalska, U., Goraj-Koniarska, J., Ueda, J., & Miyamoto, K. (2020). Formation of the secondary abscission zone induced by the interaction of methyl jasmonate and auxin in Bryophyllum calycinum: relevance to auxin status and histology. International Journal of Molecular Sciences, 21, 2784‒2802. Meyer, A., Miersch, O., Buttner, C., Dathe, W., & Sembdner, G. (1984). Occurrence of the plant growth regulator jasmonic acid in plants. Journal of Plant Growth Regulation, 3, 1‒8. Mosblech, A., Thurow, C., Gatz, C., Feussner, I., & Heilmann, I. ( 2011). J asmonic a cid p erception b y COI1 involves inositol polyphosphates in Arabidopsis thaliana. The Plant Journal, 65, 949‒957. Muradoglu, F., Yıldız, K., & Balta, F. (2010). Methyl jasmonate influences of pollen germination and pollen tube growth of apricot (Prunus armeniaca L.). Yu¬zuncu Yıl University Journal of Agricultural Sciences, 20, 183‒188. Neill, S. J., Desikan, R., Clarke, A., Hurst, R. D., & Hencock, J. T. (2002). Hydrogen peroxide and nitric oxide as signaling molecules in plants. Journal of Ex¬perimental Botany, 53, 1237‒1247. Norastehnia, A., Sajedi, R. H., & Nojavan-Asghari, M. (2007). Inhibitory effects of methyl jasmonate on seed germination in maize (Zea mays): effect on α-amylase activity and ethylene production. General and Applied Plant Physiology, 33, 13‒23. Norppa, H., & Falck, G. C. (2003). What do human mi¬cronuclei contain?. Mutagenesis, 18, 221‒33. O’Brien, J. A., & Benkova, E. (2013). Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science, 4, 1‒11. Odjegba, V. J., & Adeniran, R. A. (2015). Bentazone herbicide induces genotoxic effect and physiological disorders in non-targeted Allium cepa L. Indian Jour¬nal of Plant Physiology, 20, 375‒379. Parthier, B. (1990). Jasmonates: hormonal regulators or stress factors in leaf senescence?. Journal of Plant Growth Regulation, 9, 57‒63. Per, T. S., Khan, M. I. R., Anjum, N. A., Masood, A., Hussaina, S. J. & Khan, N. A. (2018). Jasmonates in plants under abiotic stresses: crosstalk with other phy¬tohormones matters. Environmental and Experimental Botany, 145, 104‒120. Rademacher, W. (2015). P lant g rowth r egulators: back¬grounds and uses in plant production. Journal of Plant Growth Regulation, 34, 845‒872. Rao, M. V., Lee, H. I., Creelman, R. A., Mullet, J. E. & Davis, K. R. (2000). Jasmonic acid signaling modu¬lates ozone-induced hypersensitive cell death. The Plant Cell, 12, 1633‒1646. Reinbothe, C., Tewes, A., Lehmann, J., Parthier, B. & Reinbothe, S. (1994). Induction by methyl jasmonat of embryogenesis-related proteins and mRNA in Nico¬tinia plumbaginifolia. Plant Science, 104, 59‒70. Ruan, C., Lian, Y. & Lium, J. (1992). Application of micronucleus test in Vicia faba in the rapid deletion of mutagenic environmental pollutants. Chinese Journal of Environmental Science, 4, 56‒58. Santino, A., Taurino, M., De Domenico, S., Bonsegna, S., Poltronieri, P., Pastor, V. & Flors, V. (2013). Jasmonate signaling in plant development and defense response to multiple (a) biotic stresses. Plant Cell Re¬ports, 32, 1085‒1098. Sarkar, D. (2008). The signal transduction pathways con¬trolling in planta tuberization in potato: an emerging synthesis. Plant Cell Reports, 27, 1‒8. Shah, K., Kumar, R. G., Verma, S. & Dubey, R. S. (2001). Effect of cadmium on lipid peroxidation, superoxide an-ion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 161, 1135‒1144. Shan, X. Y., Wang, J. X., Chua, L. L., Jiang, D., Peng, W. & Xie, D. X. (2011). The role of Arabidopsis Rubisco activase in jasmonate-induced leaf senescence. Plant Physiology, 155, 751‒764. Sharma, M. & Laxmi, A. (2016). Jasmonates: emerging players in controlling temperature stress tolerance. Frontiers in Plant Science, 6, 1129‒1139. Sharma, P. C. & Gupta P. K. (1982). Karyotypes in some pulse crops. Nucleus, 25, 181‒185. Smaka-Kincl, V., Stegnar, P., Lovka, M. & Toman, M. J. (1996). The evaluation of waste, surface and ground water quality using the Allium test procedure. Muta¬tion Research/Genetic Toxicology, 368, 171‒179. Soares, A. M. S., Souza, T. F., Jacinto, T. & Machado, O. L. T. (2010). Effect of methyl jasmonate on anti-oxidative enzyme activities and on the contents of ROS and H2O2 in Ricinus communis leaves. Brazilian Journal of Plant Physiology, 22, 151‒158. Srivastava, A. K. & Singh, D. (2020). Assessment of malathion toxicity on cytophysiological activity, DNA damage and antioxidant enzymes in root of Allium cepa model. Scientific Reports, 10, 1‒10. Sutan, N. A., Popescu, A., Mihaescu, C., Soare, L. C. & Marinescu, M. V. (2014). Evaluation of cytotoxic and genotoxic potential of the fungicide Ridomil in Allium cepa L. Analele Stiintifice ale Universitatii Al I Cuza din Iasi, 60, 5‒12. Swiatek, A., Lenjou, M., Bockstaele, D. V., Inze, D. & Onckelen, H. V. (2002). Differential effects of jas¬monic acid and abscisic acid on cell cycle progression in Tobacco BY-2 Cell. Plant Physiology, 128, 201‒211. Tedesco, S. B. & Laughinghouse, I. V. H. D. (2012). Boindicator of genotixicity. The Allium cepa test. En-vironmental Contamination, 138‒156. Tsai, F. Y., Lin, C. C. & Kao, C. H. (1997). A compa¬tative study of the effects of abscisic acid and methyl jasmonate on seedling growth of rice. Plant Growth Regulation, 21, 37‒42. Turkoglu, S. (2007). Genotoxicity of five food preserva¬tives tested on root tips of Allium cepa L. Mutation Research, 626, 4‒14. Ueda, J. & Saniewski, J. (2006). Methyl Jasmonate-in¬duced stimulation of chlorophyll formation in the basal part of tulip bulbs kept under natural light conditions. Journal of Fruit and Ornamental Plant Research, 14, 199‒210. Unal, M., Palavan Unsal, N. & Tufekci, M. A. (2002). Role of putrescine and its biosynthetic inhibitor on seed germination root elongation and mitosis in Hor¬deum vulgare L. Bulletin of Pure & Applied Sciences Botany, 21, 33‒38. Unyayar, S., Celik, A., Cekic, F. O. & Gozel, A. (2006). Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Muta¬genesis, 21, 77‒81. Wasternack, C. (2014). A ction o f j asmonates i n p lant stress responses and development-applied aspects. Biotechnology Advances, 32, 31‒39. Wasternack, C. & Strnad, M. (2016). Jasmonate signal¬ing in plant stress responses and development-active and inactive compounds. New Biotechnology, 33, 604‒613. Vranova, E., Inze, D. & Van Breusegen, F. (2002). Signal transduction during oxidative stress. Journal of Experimental Botany, 53, 1227‒1236. Yarsan, E. (2014). Lipid peroxidation event and its ap¬plications for prevention. Van Veterinary Journal, 9, 89‒95. Yıldız, K., Muradoglu, F. & Yılmaz, H. (2008). The ef¬fect of jasmonic acid on germination of dormant and nondormant pear (Pyrus communis L.) seeds. Seed Science and Technology, 36, 569‒574. Zou, J., Yue, J., Jiang, W. & Liu, D. (2012). Effects of cadmium stress on root tip cells and some physiologi¬cal indexes in Allium cepa var. agrogarum L. Acta Bio¬logica Cracoviensia Series Botanica, 54, 129‒141.
|
|
| Date published: 2024-06-26
Download full text