Tolerance of Aegilops cylindrica Host to sodium chloride salinity
Gergana Desheva, Evgenia Valchinova, Albena Pencheva, Bozhidar Kyosev, Manol Deshev
Abstract: The aim of this study was to investigate the effect of six different concentrations of sodium chloride (50 mM, 100 mM, 150 mM, 200 mM, 250 mM, 300 mM) on seed germination and early seedling growth of Aegilops cylindrica Host. The experiment was conducted, with seeds from five accessions taken from an trait conducted at IPGR-Sadovo, Bulgaria. For each variant of the experiment, two replicates of 25 seeds were set for germination between rolls of filter paper (Grade FT 55) with 20 ml of the respective solutions tested. Deionized water was used as control. Data were analyzed by analysis of variance (ANOVA) and Duncan‘s multiple test. The concentrations of sodium chloride studied had different effects on germination and seedling characteristics. The mean germination time was prolonged, and the germination characteristics (germination (%), coefficient of velocity of germination, germination rate index (% day-1), and germination index) and seedling growth characteristics (shoot and root length (cm), fresh and dry weight per shoot and root (mg/plant)) were suppressed with increasing salt concentration. The highest relative injury coefficient was recorded when treated with 250 and 300 mM NaCl solution. The reduction in shoot length ranged widely from 14% (at 50 mM NaCl) to 94% (at 300 mM NaCl). Aegilops cylindrica Host were classified as having very high to high germination tolerance when treated with 50-150 mM NaCl solution, medium tolerance at 200 mM NaCl solution, very low tolerance at 250 mM NaCl solution and susceptible to germination at 300 mM NaCl solution. At salinity levels of 200-300 mM NaCl solution, the analyzed specimens of Aegilops cylindrica Host exhibited low to very low tolerance to seegling growth.
Keywords: Aegilops cylindrica Host; germination; NaCl; salinity; seedling growth; tolerance
Citation: Desheva, G., Valchinova, E., Pencheva, A., Kyosev, B. & Deshev, M. (2025). Tolerance of Aegilops cylindrica Host to sodium chloride salinity. BulgarianJournal of Crop Science, 62(3) 61-69
References: (click to open/close) | Arabbeigi, M., A. Arzani, M. M. Majidi, R. Kiani, B.E. Sayed-Tabatabaei & Habibi, F. (2014). Salinity tolerance of Aegilops cylindrica genotypes collected from hyper-saline shores of Uremia Salt Lake using physiological traits and SSR markers. Acta Physiol Plant 36, 2243–2251. Arabbeigi, M., Arzani, A., Majidi, M. M., Sayed-Tabatabaei, B. E. & Prasenjit, S. (2018). Expression pattern of salt tolerance-related genes in Aegilops cylindrical. Physiol Mol Biol Plants, 24, 61–73. https://doi.org/10.1007/s12298-017-0483-2. Arzani, A. & Ashraf, M. (2016). Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci., 35, 146–189. Arzani, A. (2008). Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell Dev Biol Plant, 44,373–383. Bai, J., Yan, W., Wang, Y., Yin, Q., Liu, J., Wight, C. & Ma, B. (2018). Screening oat genotypes for tolerance to salinity and alkalinity. Front Plant Sci., Oct 2, 9, 1302. doi: 10.3389/fpls.2018.01302. PMID: 30333838; PMCID: PMC6176118. Balasubramaniam, T., Shen, G., Esmaeili, N. & Zhang, H. (2023). Plants’ response mechanisms to salinity stress. Plants, 12, 2253. https://doi.org/10.3390/plants12122253. Desheva, G., Valchinova, E., Pencheva, A. & Tosheva, S. (2019). The effect of salinity (NaCl) on germination and early seedling growth of rye seeds. Field Crop Studies. XII(4), 9-24. Gholizadeh, F., Mirzaghaderi, G., Danish, S., Farsi, M. & Marashi, S. H. (2021). Evaluation of morphological traits of wheat varieties at germination stage under salinity stress. PLoS One. Nov 4;16(11):e0258703. doi: 10.1371/journal.pone.0258703. Hadjadj, S., Belkis, Sekerifa, B., Khellafi, H., Krama, K., Rahmani, S. & Aminata, O. E. Hadj-Khelil. (2022). Salinity and type of salt effects on seed germination characteristics of medicinal plant Zygophyllum album L. (Zygophyllaceae) native to the Algerian Sahara, Journal of Applied Research on Medicinal and Aromatic Plants,Volume 31, 100412, ISSN 2214-7861,https://doi.org/10.1016/j.jarmap.2022.100412. Hadjadj, S., Sana, M., Yousra, H., Theldja, B., Zohra. G., Sara, R., Yasmina, A., Aminata, O. E. Hadj-Khelil. (2023). Comparative effects of NaCl and Na2SO4 on germination and early seedling stages of the halophyte Carthamus tinctorius L. Journal of Applied Research on Medicinal and Aromatic Plants,Volume 35,100463,ISSN 2214-7861,https://doi.org/10.1016/j.jarmap.2023.100463. Hussain, S., Shuli, L., Rui, Z., Yinglong, C., Altaf, A. & Qigen, D. (2022). Germination and early seedling growth attributes of rice (Oryza sativa L.) cultivars under different salinity (nacl) stresses (Research Note). The Philippine agricultural scientist, Vol 105 No 4, 404- 412. Islam, M., & Karim, M. (2010). Evaluation of rice (Oryza sativa L.) genotypes at germination and early seedling stage for their tolerance to salinity. The agriculturists, 8(2), 57-65. Islam, M. M., Abdullah Al Mamun, S. M. & Tazul Islam, S. M. (2023). Impact of different levels of nacl induced salinity on seed germination and plant growth of fodder oats (Avena sativa L.). J Bangladesh Agril Univ 20(1), 40–48. Jamil, M., Lee, D. B., Jung, K. Y., Ashraf, M., Lee, S. C. & Rha, S. E. (2006). Effect of salt (NaCl) stress on germination and early seedling growth of four Vegetable species. J. Central Eur. Agric., 7(2), 273-282. Kader, M. A. & Jutzi, S. C. (2004). Effects of thermal and salt treatments during imbibition on germination and seedling growth of sorghum at 42/19 C. Journal of Agronomy and Crop Science, 190(1), 35–38. Kader, M. A. (2005). A comparison of seed germination calculation formulae and the associated interpretation of resulting data. Journal and Proceeding of the Royal Society of New SouthWales, 138, 65–75. Kiani, A., Arzani, A. & Habibi, F. (2015). Physiology of salinity tolerance in Aegilops cylindrica. Acta Physiol Plant 37, 135. https://doi. org/10.1007/s11738-015-1881-0. Kiani, R., Arzani, A. & Mirmohammady, M. S. (2021a). Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, Aegilops cylindrica and their amphidiploids. Front. Plant Sci. 12:646221. doi: 10.3389/fpls.2021.646221. Kiani, R., Arzani, A., Mirmohammady Maibody, S. A. M., Mehdi, R. & Khadijeh, R. (2021). Morpho-physiological and gene expression responses of wheat by Aegilops cylindrica amphidiploids to salt stress. Plant Cell Tiss Organ Cult 144, 619–639 https://doi.org/10.1007/s11240-020-01983-3. Kotula, L., Noreen, Z., Muhammad, F., Sergey, S. & Kadambot. H. M. S. (2024). Making wheat salt tolerant: What is missing? The Crop Journal, https://doi.org/10.1016/j.cj.2024.01.005. Li, Y. (2008). Effect of salt stress on seed germination and seedling growth of three salinity plants. Pakistan journal of biological sciences, 11(9), 1268-1272. Lynch, J. P. (2013). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of botany,112, pp. 347-357. Mujeeb-ur-Rahman, U., Soomro, A., Zahoor-ul-Haq, M. & Gul, Sh. (2008). Effects of NaCl salinity on wheat (Triticum aestivum L.) cultivars. World Journal of Agricultural Sciences, 4 (3), 398-403. Mustafa, Y., Hakan, T. & Evrim, S. A. (2006). Seed germination of populations of wild wheat species, Aegilops biuncialis and Ae. triuncialis: effects of salinity, temperature and photoperiod. Pakistan Journal of Biological Sciences, 9: 1299-1305. DOI: 10.3923/pjbs.1299.1305. Pascaru, A., Giorgievici, A.Ş., Gaman, C. D., O. T. Bence, D. R. Dicu, Horga, V. C., Petrescu, I. & Boldea, M. (2015). Sodium chloride effect on rye (Secale cereale). Journal of Horticulture, Forestry and Biotechnology, Volume 18(4), 147- 150. Rajabi, D., Zahedi, A., Ludwiczak, M., Cardenas, P. S. & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum A. (Sorghum bicolor L.) Moench) genotypes. Agronomy, 10, 859. https://doi.org/10.3390/agronomy10060859. Saha, P., Sade, N., Arzani, A., Wilhelmi, M.M.R., Coe, K.M., Li, B. & Blumwald, E. (2016). Effects of abiotic stress on physiological plasticity and water use of Setaria viridis (L.). Plant Sci 251,128–138. Shavrukov, Y. , Peter. L. & Mark, T. (2009). Salinity tolerance and sodium exclusion in genus Triticum. Breeding Science 59: 671–678. Singh, M. , Usha, N., Antul, K., Anuj, C., Hardeep, S. & Sittal, T. (2021). Salinity tolerance mechanisms and their breeding implications. Journal of Genetic Engineering and Biotechnology, 19:173.https://doi.org/10.1186/s43141-021-00274-4. Uçarlı, C. (2020). Effects of salinity on seed germination and early seedling stage. Abiotic Stress in Plants p. 211.DOI: http://dx.doi.org/10.5772/intechopen.93647. Vaccarella, M., Frangipane, B., Saia, Raimondo, S., Rigoglioso, L., Petralia, A. R., Genduso, M. & Miceli, C. (2024). Evaluation of durum wheat genotypes at germination stage under salinity stress. Biol. Life Sci. Forum,30, 12. https://doi.org/10.3390/IOCAG2023-16339. Yohannes, G., Leul, K., Berhanu, A. & Tadesse, B. (2020). Effect of salt stresses on seed germination and early seedling growth of Camelina sativa L. Momona Ethiopian Journal of Science (MEJS), V12(1),1-19.
|
|
| Date published: 2025-06-26
Download full text