Sclerotinia sclerotiorum genetic diversity in Bulgaria
Keranka Zhecheva, Magdalena Koleva, Ivan Kiryakov
Abstract: The mycelial compatibility of 154 isolates of Sclerotinia sclerotiorum, obtained from sunflower and rapeseed plant samples, collected from 2019 - 2021 from 17 locations in Northern and Southern Bulgaria, was studied. The studied isolates were grouped into 108 local MCGs, and 60.1% included only one isolate. The Shannon index (Ho) at the studied locations varied from 0.718 to 1.00. The total diversity in MCG resulting from variation among individuals in the population was 92.2%, and the proportion of total diversity in MCG due to variation among populations was 7.78%. The clonal index for all populations was 0.299. In two of the six compatibility tests between isolates from different locations, 10 additional groups were formed, and one of them (MCGs-1D5x2D4x1SH3x1Y8) included six isolates from four locations (Dropla – Tsaricheno - Rish 1-Straldzha) located in three regions of the country. The results show significant genetic diversity in S. sclerotiorum populations based on mycelial compatibility between isolates.
Keywords: genetic diversity; MCGs; Sclerotinia sclerotiorum
Citation: Zhecheva, K., Koleva, M., & Kiryakov, I. (2024). Sclerotinia sclerotiorum genetic diversity in Bulgaria. Bulgarian Journal of Crop Science, 61(5) 97-104 (Bg).
References: (click to open/close) | Aban, C. L., Taboada, G., Spedaletti, Y., Aparicio, M., Curti, R. N., Casalderrey, N. B. & Galván, M. Z. (2018). M olecular, m orphological a nd p athogenic diversity of Sclerotinia sclerotiorum isolates from common bean (Phaseolus vulgaris) fields in Argentina. Plant Pathology, 67(8), 1740-1748. Abawi, G. S., & Grogan, R. G. (1979). Epidemiology of diseases caused by Sclerotinia species. Phytopathol¬ogy, 69(8), 899-904. Adams, P. B & Ayers, W. A. (1979) Ecology of Sclerotinia species. Phytopathology, 69, 896-898. Atallah, Z. K., Larget, B., Chen, X., & Johnson, D. A. (2004). High genetic diversity, phenotypic uniformity, and evidence of outcrossing in Sclerotinia sclerotiorum in the Columbia Basin of Washington State. Phytopa¬thology, 94, pp. 737-742. BANSIC (2023). FINAL RESULTS for employment and use of the territory of BULGARIA in 2023. https://www.mzh.government.bg/media/filer_pub¬lic/2024/02/02/ra_433_publicationbancik2023.pdf Bolton, M. D, Thohmma, B. P. H. J. & Nelson, B. D. (2006). Sclerotinia sclerotiorum (Lib.) d e Bary: biol¬ogy and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7(1), 1–16 Buchwaldt, L., Garg, H., Puri, K. D., Durkin, J., Adam, J., Harrington, M., ... & Gali, K. K. (2022). Sources of genomic diversity in the self-fertile plant pathogen, Sclerotinia sclerotiorum, and consequences for resistance breeding. Plos one, 17(2), e0262891. Chaudhary, S., Lal, M., Sagar, S., Sharma, S., Meena, A. L., & Kumar, M. (2023). Variation in oxalic acid production, mycelial compatibility and pathogenicity amongst isolates of Sclerotinia sclerotiorum causing white mold disease. Vegetos, 1-13. Clarkson, J. P., Coventry, E., Kitchen, J., Carter, H. E., & Whipps, J. M. (2013). Population structure of Sclerotinia sclerotiorum in crop and wild hosts in the UK. Plant Pathology, 62(2), 309-324. Derbyshire, M. C., Newman, T. E., Khentry, Y., & Taiwo, A. O. (2022). The evolutionary and molecular features of the broad-host-range plant pathogen Sclero¬tinia sclerotiorum. Molecular Plant Pathology, 23(8), 1075-1090. https://doi.org/10.1111/mpp.13221 Drenth, A., McTaggart, A. R., & Wingfield, B. D. (2019). Fungal clones win the battle, but recombination wins the war. IMA fungus, 10, 1-6. Durman, S. B., Menéndez, A. B., & Godeas, A. M. (2003). Mycelial compatibility groups in Buenos Aires field populations of Sclerotinia sclerotiorum (Sclero¬tiniaceae). Australian Journal of Botany, 51(4), 421-427. Ekins, M., Hayden, H.L., Aitken, E., & Goulter, K. C. (2010). Population Structure of Sclerotinia sclero¬tiorum on Sunflower in Australia. Australas. Plant Pathology, 40, 99–108. Kabbage, M., Yarden, O., & Dickman, M. B. (2015). Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle. Plant science, 233, 53-60. Kamvar, Z. N., & Everhart, S. E. (2018). Something in the agar does not compute: On the discriminatory power of mycelial compatibility in Sclerotinia sclerotiorum. Peer J Preprints https://doi.org/10.7287/ peerj.preprints.26670v1 Karimi, E., Safaie, N., & Shams-Bakhsh, M. (2012). Mycelial compatibility groupings and pathogenic diversity of Sclerotinia sclerotiorum ( Lib.) d e B ary populations on canola in Golestan Province of Iran. J. Agr. Sci. Tech. (2012) Vol. 14, pp. 421-434. Kiryakov, I. & Zhecheva, K. (2019). Mycelial compat¬ibility and aggressiveness of Bulgarian Sclerotinia sclerotiorum isolates. Field Crops Studies, XII(3), 9-22. Liang, X., & Rollins, J. A. (2018). Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum. Phytopathology, 108(10), 1128-1140. Liua, J., Meng, Q., Zhang, Y., Xianga, H., Li, Y., Shi, F., Ma, L., Liu, C., Liu, Y., Su, B. & Li, Z. (2018). Mycelial compatibility group and genetic variation of sunflower Sclerotinia sclerotiorum i n N ortheast China. Physiological and Molecular Plant Pathology, 102, pp. 185-192. Mahalingam, T., Chen, W., Rajapakse, C. S., Som¬achandra, K. P., & Attanayake, R. N. (2020). Ge¬netic diversity and recombination in the plant pathogen Sclerotinia sclerotiorum detected in Sri Lanka. Patho¬gens, 9(4), p. 306. Maltby, A. D., & Mihail, J. D. (1997). Competition among Sclerotinia sclerotiorum Genotypes within Canola Stems. Can. J. Bot. 75, pp. 462–468 Saharan, G. S., & Mehta, N. (2008). Sclerotinia diseases of crop plants: biology, ecology and disease manage¬ment. Springer Science & Business Media. Silva, R. A., Ferro, C. G., Lehner, M. D. S., Paula Jr, T. J., & Mizubuti, E. S. (2021). The population of Sclerotinia sclerotiorum in Brazil is structured by mycelial compatibility groups. Plant Disease, 105(11), 3376-3384. Yan, L., Song, W., Yu, D., Kishan Sudini, H., Kang, Y., Lei, Y., ... & Liao, B. (2022). Genetic, phenotypic, and pathogenic variation among Athelia rolfsii, the causal agent of peanut stem rot in China. Plant Disease, 106(10), pp. 2722-2729. Yang, D., Zhang, J., Wu, M., Chen, W., Li, G., & Yang, L. (2016). Characterization of the mycelial compat¬ibility groups and mating type alleles in populations of Sclerotinia minor in central China. Plant Disease, 100(11), pp. 2313-2318. Yu, Y., Cai, J., Ma, L., Huang, Z., Wang, Y., Fang, A., ... & Bi, C. (2020). Population structure and aggres¬siveness of Sclerotinia sclerotiorum from rapeseed (Brassica napus) in Chongqing city. Plant disease, 104(4), 1201-1206.
|
|
| Date published: 2024-10-28
Download full text