Нахут (Cicer arietinum L.) под стрес: Обзор на влиянието на засушаването и високите температури
Севдалина Нинова, Иванина Василева
Резюме: Засушаването и топлинният стрес са основни абиотични фактори, които ограничават растежа и продуктивността на нахута (Cicer arietinum L.) като неблагоприятно повлияват физиологичните и биохимичните процеси. На базата на трудовете на различни учени се опитахме да обобщим ефектите на водния дефицит и повишените температури, и развиващите се в следствие на тях засушаване и топлинен стрес, върху растежа, добива и механизмите на стресов отговор на нахута. Наблюдаваха се разлики в количеството биомаса и добива на семена в зависимост от това дали изследваните образци са чувствителни или толерантни към стрес. В някои случаи биохимичните анализи разкриха увеличено натрупване на осмопротектанти, като пролин и разтворими захари, което предполага тяхната роля в осмотичната регулация. Беше взета под внимание и ролята на различни съединения с доказана антиоксидантна активност, както и активността на антиоксидантни ензими, включително супероксид дисмутаза, каталаза и пероксидаза. Този преглед има за цел да разкрие многопластовия отговор на нахута на засушаване и топлинен стрес, включващ физиологични, биохимични и молекулярни адаптации. Разбирането на тези механизми е от съществено значение за разработването на толерантни към суша и високи температури сортове нахут, което допринася за устойчивостта на земеделието и продоволствената сигурност в условия на променящ се климат.
Ключови думи: устойчиво земеделие; антиоксиданти; добив; променящ се климат; физиологични и биохимични параметри
Цитиране: Ninova, S., & Vasileva, I. (2025). Chickpea (Cicer arietinum L.) under stress: A review of drought and heat impact. Bulgarian Journal of Crop Science, 62(2) 68-77 (Bg).
Литература: (click to open/close) | Abro, A. A., Anwar, M., Javwad, M. U., Zhang, M., Liu, F., Jiménez-Ballesta, R., ... & Ahmed, M. A. (2023). Morphological and physio-biochemical responses under heat stress in cotton: Overview. Biotechnology Reports, 40, e00813. Aebi, H. (1984). Catalase in vitro. In: Methods in enzymology. Academic press, New York, USA, 105, pp. 121-126. Ahmed, W., Safdar, U., Ali, A., Haider, K., Tahir, N., Sajid, S., Ahmad, M., Khalid, M. N. & Sattar, M.T. (2022). Sustainable water use in agriculture: a review of worldwide research. International Journal of Agriculture and Biosciences, 11(4), 246-250. Akter, S., Huang, J., Waszczak, C., Jacques, S., Gevaert, K., Breusegem, F. V., & Messens, J. (2015). Cysteines under ROS attack in plants: a proteomics view. Journal of Expermiental Botany, 66, pp. 2935-2944. Arunkumar, R., Sairam, R. K., Deshmukh, P. S., Pal, M. A. D. A. N., Khetarpal, S., Pandey, S. K., ... & Singh, T. P. (2012). High temperature stress and accumulation of compatible solutes in chickpea (Cicer arietinum L.). Indian Journal of Plant Physiology, 17, pp. 145-150. Asada, K., & Takahashi, M. (1987). Production and scavenging of active oxygen in chloroplasts. In: Photoinhibition (Kyle D.J., Osmond B., Arntzen C.J., eds). Elsevier Amsterdam, NL, pp. 227–287. Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, pp. 205-207. Beauchamp, C., & Fridovich, I. (1971). Superoxide Dismutase: improved assays and applicable to acryl amide gels. Analytical Biochemistry, 44, pp. 276-287. Beer, R. F. J., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, pp. 133–140. Bergmeyer, H. U. (1974). Section C: Methods for Determination of Enzyme Activity. In: Methods of Enzymatic Analysis, 2nd edn, Vol. II. Academic Press, New York, USA, 685–690. Berry, J. & Bjorkman, O. (1980). Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annual Review of Plant Physiology, 31(1), 491–543.. Beyer Jr, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. Cakmak, I., & Horst J. (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologica Plantarum, 83, pp. 463–468. Ceyhan, E., Önder, M., Kahraman, A., Topak, R., Ateş, M. K., Karadas, S., & Avcı, M. A. (2012). Effects of drought on yield and some yield components of chickpea. International Journal of Agricultural and Biosystems Engineering, 6(6), 347-351. Chandlee, J. M., & Scandalios, J. G. (1984). Analysis of variants affecting the catalase development program in Maize scutellum. Theoretical and Applied Genetics, 69, pp. 71–77. Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2016). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856–867. Conroy, J. P., Küppers, M., Küppers, B., Virgona, J., & Barlow, E. W. R. (1988). The influence of CO2 enrichment, phosphorus deficiency and water stress on the growth, conductance and water use of Pinus radiata D. Don. Plant, Cell & Environment, 11(2), 91-98. Dalvi, U., Naik, R., & Kale, A. (2017). Antioxidative Enzyme Responses against Fusarium wilt (Fusarium oxysporum f. sp. ciceris) in Chickpea Genotypes. Annual Research & Review in Biology, 12(5), 1-9. Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environmental Sciences, 2, p. 53. De Gara, L., & Foyer, C. H. (2017). Ying and Yang interplay between reactive oxygen and reactive nitrogen species controls cell functions. Plant Cell and Environment, 40, pp. 459-461. Deshmukh, P. S., Sairam, R. K., & Shukla, D. S. (1991). Measurement of ion leakage as a screening technique for drought resistance in wheat genotypes. Indian Journal of Plant Physiology, 34, 89-91. Devasirvatham, V., & Tan, D. K. Y. (2018). Impact of high temperature and drought stresses on chickpea production. Agronomy, 8, 145. Devasirvatham, V., Gaur, P., Raju, T., Trethowan, R., & Tan, D. (2015). Field response of chickpea (Cicer arietinum L.) to high temperature. Field Crops Research, 172, 59–71. Dhindsa, R. S., Plumb-Dhindsa, P. A. M. E. L. A. & Thorpe, T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental botany, 32(1), 93-101. Fang, X., Turner, N.C., Yan, G., Li, F., & Siddique, K.H. (2010) Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. Journal of Experimental Botany, 61, pp. 335–345. FAOSTAT Database (2008). Food and Agriculture Organization, Rome. Avalaible at: www.Fao.org Farrant, J. M. (2000). A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecology, 151, pp. 29-39. Garcia-Caparros, P., De Filippis, L., Gul, A., Hasanuzzaman, M., Ozturk, M., Altay, V., & Lao, M. T. (2021). Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. The Botanical Review, 87, pp. 421-466. Girousse, C., Bournoville, R., & Bonnemain, J. L. (1996) Water deficit-induced changes in concentrations in proline and some other amino acids in the phloem sap of alfalfa. Plant Physiology, 111, 109–113. Gökmen, E., & Ceyhan, E. (2015). Effects of drought stress on growth parameters, enzyme activities and proline content in chickpea genotypes. Bangladesh Journal of Botany, 44(2), 177-183. Guizani, A., Askri, H., Amenta, M. L., Defez, R., Babay, E., Bianco, C., Rapana, N., Finetti-Sialer, M., & Garbo, F. (2023) Drought responsiveness in six wheat genotypes: identification of stress resistance indicators. Frontiers in Plant Science, 14, 1232583. Hasanuzzaman, M., Fujita, M., Teixeira Filho, M. C. M., Nogueira, T. A. R., & Galindo, F. S. (2020). Sustainable Crop Production. BoD–Books on Demand. He, H., Breusegem, F. V., & Mhamdi, A. (2018). Redox-dependent control of nuclear transcription in plants. Journal of Experimental Botany, 69, pp. 3359-3372. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, pp. 189–198. Hemeda, H. M. & Klein, B. P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Sciences, 55, pp. 184–185. Hera, M. H. R., Hossain, M., & Paul, A. K. (2018). Effect of foliar zinc spray on growth and yield of heat tolerant wheat under water stress. International Journal of Biological and Environmental Engineering, 1, pp. 10–16. Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, pp. 604-611. Holy, M. C. (1972). Indole acetic acid oxidase: a dual catalytic enzyme. Plant Physiology, 50, pp. 15-18. Inamullah & Isoda, A. (2005). Adaptive Responses of Soybean and Cotton to Water Stress II. Changes in CO2 Assimilation Rate, Chlorophyll Fluorescence and Photochemical Reflectance Index in Relation to Leaf Temperature. Plant Production Science, 8(2),131–138. Kahraman, A., Ceyhan, E., & Harmankaya, M. (2015). Nutritional variation and drought tolerance in chickpeas (Cicer arietinum L.). Journal of Elementology, 20(2). Kalefetoğlu Macar, T., & Ekmekci, Y. (2009). Alterations in photochemical and physiological activities of chickpea (Cicer arietinum L.) cultivars under drought stress. Journal of Agronomy and Crop Science, 195(5), 335-346. Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57(2), 315-319. Karalija, E., Vergata, C., Basso, M. F., Negussu, M., Zaccai, M., Grossi-de-Sa, M. F., & Martinelli, F. (2022). Chickpeas’ tolerance of drought and heat: Current knowledge and next steps. Agronomy, 12(10), 2248. Karim, M., Zhang, Y. Q., Zhao, R.R., Chen, X.P., Zhang, F. S., & Zou, C.Q. (2012). Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. Journal of Plant Nutrition and Soil Science, 175, pp. 142–151. Kumar, A., & Verma, J. P. (2018). Does plant-microbe interaction confer stress tolerance to plants: A review. Microbiology Research, 207, pp. 41–52. Mafakheri, A., Siosemardeh, A. F., Bahramnejad, B., Struik, P. C., & Sohrabi, Y. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian journal of crop science, 4(8), 580-585. Mukherjee, S. P., & Choudhuri, M. A. (1983) Implications of Water Stress-Induced Changes in the leaves of Indigenous Ascorbic Acid and Hydrogen Peroxide in Vigna Seedlings. Physiologia Plantarum, 58, pp. 166-170. Najaphy, A., Khamssi, N. N., Mostafaie, A., & Mirzaee, H. (2010). Effect of progressive water deficit stress on proline accumulation and protein profiles of leaves in chickpea. African Journal of Biotechnology, 9(42), 7033-7036. Nakano, Y., & Asada, K. (1980). Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant and Cell Physiology, 21(8), 1295-1307. Nayyar, H., Kaur, S., Singh, S., & Upadhyaya, H.D. (2006). Differential sensitivity of Desi (small-seeded) and Kabuli (large-seeded) chickpea genotypes to water stress during seed filling: Effects on accumulation of seed reserves and yield. Journal of the Science of Food and Agriculture, 86, pp. 2076–2082. Nelson, N. (1944). A photometric adoptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 153, pp. 375-380. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical biochemistry, 95(2), 351-358. Onwueme, I. C. (1979). Rapid plant conserving estimation of heat tolerance in plants. Journal of Agricultural Sciences, 92, pp. 527-536. Ozgur, R., Uzilday, B., Iwata, Y., Koizumi, N., & Turkan, I. (2018). Interplay between the unfolded protein response and reactive oxygen species: a dynamic duo. Journal of Experimental Botany, 69, pp. 3333-3345. Parahin, N. V., & Petrova, S. N. (2006). Agricultural aspects of symbiotic nitrogen fixation. Kolos S, 152 (Ru). Patel, P. K., Hemantaranjan, A., Sarma, B. K., & Radha, S. (2011). Growth and antioxidant system under drought stress in chickpea (Cicer arietinum L.) as sustained by salicylic acid. Journal of Stress Physiology & Biochemistry, 7(4), 130-144. Pimonov, K. I., & Kozlov, A.V. (2012). Dyer’s and chicpeas precursorsnof winter wheat on ordinary chernozem. Agriculture, 1, 31-33 (Ru). Raheleh, R., Ramazanali, K., & Ali, G. (2012). Use of biochemical indices and antioxidant enzymes as a screening technique for drought tolerance in Chickpea genotypes (Cicer arietinum L.). African Journal of Agricultural Research, 7(39), 5372-5380. Rani, A., Devi, P., Jha, U.C., Sharma, K. D., Siddique, K. H., & Nayyar, H. (2020). Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Frontiers in Plant Sciences, 10, p. 1759. Rao, V. M., Hale, B. A., & Omrod, D. P. (1995). Amelioation of ozone induced oxidative damage in wheat plants grown under high carbon dioxide. Plant Physiology, 109, pp. 421–432. Riccardi, F., Gazeau, P., Jacquemont M., Vincent, D., & Zivy, M. (2004). Deciphering genetic variations of proteomeresponses to water deficit in maize leaves. Plant Physiology and.Biochemistry, 42, 1003–1011. Sati, D., Pande, V., Pandey, S. C., & Samant, M. (2022). Recent advances in PGPR and molecular mechanisms involved in drought stress resistance. Journal of Soil Science and Plant Nutrition, 1–19. Sies, H. (2018). On the history of oxidative stress: Concept and some aspects of current development. Current Opinion in Toxicology, 7, pp. 122-126. Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative stress. Annual Reviews of Biochemistry, 86, pp. 715-748. Sohrabi, Y., Heidari, G., Weisany, W., Golezani, K. G., & Mohammadi, K. (2012). Changes of antioxidative enzymes, lipid peroxidation and chlorophyll content in chickpea types colonized by different Glomus species under drought stress. Symbiosis, 56, pp. 5-18. Stumpf, D. K. (1984). Quantification and purification of quarternary ammonium compounds from halophyte tissue. Plant Physiology, 75, pp. 273–274. Szarka, A., Tomasskovics, B., & Bánhegyi, G. (2012). The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. International Journal of Molecular Sciences, 13(4), 4458-4483. Tului, V., Janmohammadi, M., Abbasi, A., Vahdati-Khajeh, S., & Nouraein, M. (2021) Influence of iron, zinc and bimetallic Zn-Fe nanoparticles on growth and biochemical characteristics in chickpea (Cicer arietinum) cultivars. Agriculture and Forestry, 67, 179–193. Tyystjarvi, E., & Aro, E. M. (1996). The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proceedings of the National Academy of Sciences, 93(5), 2213–2218. Ullah, A., Farooq, M., Rehman, A., Hussain, M., & Siddique, K. H. (2020). Zinc nutrition in chickpea (Cicer arietinum): A review. Crops Pasture Science, 71, pp. 199–218. Um, M-J., Yeonjoo, K., Daeryong, P., Kichul, J., Zhan, W, Mun Mo, Kim. & Hongjoon, S. (2020). Impacts of potential evapotranspiration on drought phenomena in different regions and climate zones. Science of the total environment, 703, 135590. Wang, S. Y., Jiao, H., & Faust, M. (1991). Changes in ascorbate, glutathione and related enzyme activity, during thidiazuron-induced bud break of apple. Plant Physiology, 82, pp. 231–236. Wang, Y., Branicky R., Noë, A., & Hekimi, S. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology, 218, pp. 1915-1928. Waszczak, C., Carmody, M., & Kangasjarvi, J. (2018). Reactive Oxygen Species in Plant Signaling. Annual Review of Plant Biology, 69, pp. 209-236.
|
|
| Дата на публикуване: 2025-04-29
Свали пълен текст