A method for maize hybrids zoning
Stefan Vulchinkov, Zhelyazko Vulchinkov
Резюме: The article proposes a method for maize hybrids zoning. The theoretically expected yield for each hybrid from each location is calculated according to the following formula: Xt = a1 +a2-a3 +(PC1g x PC1e ). When the theoretical yield of a certain hybrid exceeds the actual yield at a given location, it can be grown to the advantage of that region, as well as the reverse version. An example is attached with calculated theoretical yields of 22 early (FAO 300-400) and 45 mid-early hybrids (FAO 400-500), as a part of the ecological variety testing of Maize Research Institute – Knezha at four locations (Knezha, Pavlikeni, Russe, Pazardzhik) in 2018. The year was chosen as representative for normal maize cultivation, after survey of a twenty-years’ test (ESO) of the Institute’s hybrids (2001-2020). The data analysis shows the following results: In FAO 300-400 group, the most suitable cultivation location is Russe with 13 hybrids (59.0% of all tested); followed by Knezha with 12 hybrids (54.5%); and Pavlikeni and Pazardzhik with 10 hybrids each (45.5%). In FAO (400-500) group the most suitable location is Pavlikeni with 27 hybrids (60.0%); Knezha and Russe with 23 hybrids each (51.1 %); and Pazardzhik – 21 hybrids (46.6%). The proposed method for hybrids zoning creates conditions for a more objective assessment of the places (locations) for priority cultivation of the varieties. The method is applicable to all field crops.
Ключови думи: maize hybrids; theoretical yield; zoning
Цитиране: Vulchinkov, S., & Vulchinkov, Zh. (2025). A method for maize hybrids zoning. Bulgarian Journal of Crop Science, 62(1) 113-121.
Литература: (click to open/close) | Agrarian report of Bulgarian Ministry of Agriculture (2020). https://www.mzh.government.bg/bg/politiki-i-programi/otcheti-i-dokladi/agraren-doklad/ Alexandrov, V. A., & Hoogenboom, G. (2000). The impact of climate variability and change on crop yield in Bulgaria. Agricultural and forest meteorology, 104(4), 315-327. Butler, E., & Huybers, P. (2013). Adaptation of US maize to temperature variations. Nature Clim Change 3, 68–72. https://doi.org/10.1038/nclimate1585 Gauch, H. G. (2006). Statistical analyses by AMMI and GGE. Crop Sci. 46: 14881500. Gauch, H. G. (2013). A Simple Protocol for AMMI Analysis of Yield Trials. Crop Science, 53: 1860-1869. https://doi.org/10.2135/cropsci2013.04.0241 Georgieva, V., Kazandjiev, V., Bozhanova, V., Mihova, G., Ivanova, D., Todorovska, E., ... & Malasheva, P. (2022). Climatic changes – A challenge for the Bulgarian farmers. Agriculture, 12(12), 2090. Georgieva, V., Kazandjiev, V., Ilchovska, M., Petrovska, N., & Valkova, V. (2023). Agrometeorlogical conditions in Central North Bulgaria region for maize growing. International Multidisciplinary Scientific Geo Conference: SGEM, 23(4.1), 227-235. Gerber, J. S., Ray, D. K., Makowski, D., Butler, E. E., Mueller, N. D., West, P. C., ... & Sloat, L. (2024). Global spatially explicit yield gap time trends reveal regions at risk of future crop yield stagnation. Nature Food, 5(2), 125-135. Hallauer, D. R. (1988). Modern methods in breeding. Workshop on maize breeding and maize production – Euromaize ’88, October 6-8, Yugoslavia. Ilker, E., Aykut Tonk, F., Caylak, O., Tosum, M., & Ozmen, I. (2009). Assessment of genotype environment interactions for grain yield in maize hybrids using AMMI and GGE biplot analyses. Turkish Journal of Field Crops 14 (2), 123-135. Kang, M. S., & Gorman, D. P. (1989). Genotype×environment interaction in maize. Agronomy Journal, 81(4), 662-664. Kazandjiev, V., Spiridonov, V., & Georgieva, V. (2022). Agrometeorological conditions in the 2021-2050 period and estimates of expected climate change. Mitrović, B., Stanisavljević, D., Treskić, S., Stojaković, M., Ivanović, M., Bekavac, G., & Rajković, M. (2012). Evaluation of experimental maize hybrids tested in multi-location trials using AMMI and GGE biplot analyses. Turkish Journal of Field Crops, 17(1), 35-40. Perkins, J. M., & Jinks, J. L. (1968). Environmental and genotype-environmental components of variability III, Multiple lines and crosses. Heredity, 23, pp. 339-354. Stojaković, M., Mitrović, B., Zorić, M., Ivanović, M., Stanisavljević, D., Nastasić, A., & Dodig, D. (2015). Grouping pattern of maize test locations and its impact on hybrid zoning. Euphytica, 204, pp. 419-431. Tomov N. (1997). “The Corn”. Book’s summary, pp. 275-282. Academic publishing house “Prof. Marin Drinov”. BAS (Bg). Troyer, A. F. (1996). Breeding widely adapted, popular maize hybrids. Euphytica 92, 163–174 (1996). https://doi.org/10.1007/BF00022842 Van Wart, J., van Bussel, L. G., Wolf, J., Licker, R., Grassini, P., Nelson, A., ... & Cassman, K. G. (2013). Use of agro-climatic zones to upscale simulated crop yield potential. Field crops research, 143, 44-55. Vulchinkov, S., & Vulchinkova, P. (2018). Breeding progress achieved of Bulgarian maize hybrids from different vegetation groups I. Grain yield. Journal of Mountain Agriculture on the Balkans, Vol. 21, Issue 1, pp. 103–116. Vulchinkov, S., Ilchovska, D., Pavlovska, B., & Ivanova, K. (2013). Trends in productive abilities of maize hybrids from different FAO groups. Bulgarian Journal of Agricultural Science, 19(4), 744-749. Vulchinkov, S., Reseleshka, L., Vulchinkova, P., Ilchovska, M., Petrovska, N., & Valkova, V. (2021). Stability assessment of maize hybrids by different methods in relation to their zoning. Agricultural Sciences/Agrarni Nauki, 13(29). Ward, J. H. (1963). Hierarchical grouping to optimazed an objective function. Journal of the American Statiatical Association. Vol. 58, Issue 301, p. 236244. Zobel, R. W., Wright, M. J., & Gauch, H. G. (1988). Statistical Analyses of Yield Trial. Agron. J., 80, pp. 388-393.
|
|
| Дата на публикуване: 2025-02-27
Свали пълен текст