Оценка по добив и качество на напреднали линии твърда пшеница, получени по метода на отдалечената хибридизация
Боряна Хаджииванова, Красимира Танева

, Виолета Божанова, Рангел Драгов
Резюме: Генетичното разнообразие, характерно за дивите видове от сем. Triticeae може да бъде източник на генетични вариации, свързани с адаптивността на културата към абиотичен и биотичен стрес, към компонентите на добива и показатели, свързани с качеството на зърното. В изследването са използвани шест напреднали линии твърда пшеница от селекционната програма на Института по полски култури - гр. Чирпан, получени в резултат на междувидова и междуродова хибридизация (три кръстоски F10-12, една кръстоска F11-13, една кръстоска BC2 F3-5 и BC2 F2-4 генерации). За сравнителна оценка на материалите е използван стандартния сорт Предел. Всички генотипове са отгледани през три реколтни години – 2020/2022 в конкурсен сортов опит в четири повторения. Целта на изследването е да се направи оценка на напредналите линиите по добив и признаци, свързани с качеството на зърното. За статистическа обработка на данните е използван анализ на варианса. Чрез анализа на варианса е установено доказано влияние на генотипа, годината на отглеждане и взаимодействието между двата фактора върху варирането на почти всички изследвани признаци. Влиянието на генотипа е значително във варирането на признаците: SDS- седиментационна стойност (97.34%), стъкловидност (85.55%), жълт индекс b* (77.85%), съдържание на протеин в зърното (50.08%), добив зърно (44.24%) и маса на 1000 зърна (36.50%). Значително е влиянието на годината във варирането на признака височина на растението (59.74%). Най висок добив (672.6 kg/da) средно за трите години на изследването е установен при линия ДВ-8360. Силен глутен по признака SDS- седиментационна стойност е установен за стандартния сорт Предел (43.0 cm3) и за линия Д-232 (35.3 cm3). Идентифицирана е глиадинова фракция γ-45 и НМГ-2 тип за линия Д-232, свързани със силен глутен.
Ключови думи: анализ на варианса; отдалечена хибридизация; твърда пшеница; глиадини; качество; добив
Цитиране: Hadzhiivanova, B., Taneva, K., Bozhanova, V., & Dragov, R. (2025). Evaluation of yield and quality of advanced durum wheat lines obtained by the distant hybridization method. Bulgarian Journal of Crop Science, 62(1) 3-16 (Bg).
Литература: (click to open/close) | Angelova, T., Dimitrov, E., Uhr, Z., Vida, G., & Bozadzhiev, B. (2023). Evaluation of Yield and Technological Qualities of Hungarian Common Winter Wheat Varieties in Central Southern Bulgaria. Journal of Mountain Agriculture on the Balkans, 26 (2), 181-203. Bozhanova, V., Dechev, D., Deneva, M., Lalev, C. & Ivanov, P. (2004). Study of Graminea species for inclusion in the durum wheat breeding program. Bulgarian Journal of Crop Science, 41, 489-494 (Bg). Hadzhiivanova, B., & Bozhanova, V. (2010). Investigation interspecific hybrids when crossing durum wheat with the wild species Aegilops cylindrica. Field Crops Study, 7 (3), 355-361 (Bg). Doneva, S. & Spetsov, P. (2013). Protein compositions in three synthetic hexaploid wheats (2n=42, ВВAUAUDD). Annual scientific book of TU–Varna, t. 2, pp. 23-29 (Bg). Bohuslavskyi, R. L. & Golik, O. V. (2001). Genetic resources of the cultivar Triticum dicoccum Schrank (Schuebl.) for wheat selection in Ukraine. Selektsiya i Nasinnytstvo, 85, 72-83. Cabas-Lühmann, P., Arriagada, O., Matus, I., Marcotuli, I., Gadaleta, A. & Schwember, A. R. (2023). Comparison of durum with ancient tetraploid wheats from an agronomical, chemical, nutritional, and genetic standpoints: a review. Euphytica, 219, p. 61. https://link.springer.com/article/10.1007/s10681-023-03188-z Cakmak, I., Torun, A., Millet, E., Feldman, M., Fahima, T., Korol, A., Nevo, E., Braun, H.J. & Özkan, H. (2004). Triticum dicoccoides: An important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr, 50, pp. 1047–1054. Colasuonno, P., Marcotuli, I., Blanco, A., Maccaferri, M., Condorelli, G. E., Tuberosa, R., Parada, R., de Camargo, A.C., Schwember, A. R., & Gadaleta, A. (2019). Carotenoid pigment content in durum wheat (Triticum turgidum L. var durum): an overview of quantitative trait loci and candidate genes. Frontiers and Plant Science, 10, p. 1347. https://doi.org/10.3389/fpls.2019.01347 Chairi, F., Aparicio, N., Serret, M. D. & Araus, J. L. (2020). Breeding effects on the genotype × environment interaction for yield of durum wheat grown after the Green Revolution: The case of Spain. The Crop Journal, 8, pp. 623-634. Chhuneja, P., Dhaliwal, H. S., Bains, N. S., & Singh, K. (2006). Aegilops kotschyi and Aegilops tauschii as sources for higher levels of grain iron and zinc. Plant Breeding, 125(5), 529 – 531. Fyroj, S. S., Biradar, S. S., Desai, S. A., Naik, R. V, Patil, M. K., Sneha, L. & Sewaram (2020). Triticum dicoccum Schubler wheat: A potential source for wheat bio-fortification program. International Journal of Chemical Studies, 8(5):1417-1422. https://doi.org/10.22271/chemi.2020.v8.i5t.10499 Goncharov, N. (2014). Biodiversity of tetraploid wheats: taxonomy, studying, increasing and preservation. Options Méditerranéennes, A No. 110, 2014 - Proceedings of the International Symposium on Genetics and breeding of durum wheat. Hailu, F. & Merker, A. (2008). Variation in gluten strength and yellow pigment in Ethiopian tetraploid wheat germplasm. Genetic Resources and Crop Evolution, 55 (2), 277- 285. https://doi.org/10.1007/s10722-007-9233-6 Huang, S., Sirikhachornkit, A., Su, X., Faris, J., Gill, B., Haselkorn, R. & Gornicki, P. (2002). Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA, 99 (12), 8133-8138. https://doi.org/10.1073/pnas.072223799 Kaplan, E.A., Keskin, Ş., Pehlivan, A., Şanal, T., Ünsal, C.F., Avcıoğlu, R., Salantur, A., Yazar, S., Özdemir, B., Alyamaç, M.E., Kılıç, G., Avcı, M.İ & Sade, F.B. (2023). Yield and quality characteristics of durum wheat genotypes under rainfed conditions in Central Anatolia Region. Genetika, 55 (2), 759-773. Кhan, K., McDonald, E. & Banasik, O. (1983). Polyacrylamide gel electrophoresis of gliadin proteins for wheat variety. Iden¬tification-procedural modifications and observations. Cereal Chemistry, 60(2), 178-181. Knott, D. R. & Zang, H. T. (1990). Leaf rust resistance in durum wheat and its relatives. In: Wheat Genetic Resources: Meeting Diverse Needs, Srivastava, J.P. and Damania, A.B. (eds). John Wiley and Sons, Chichester, UK, pp. 311-316. Kudryavtsev, A., Illichevskii, N., Boggini, G. & Benedettelli, S. (1996). Gliadin polymorphism and genetic diversity of mod¬ern Italian durum wheat. Journal of Genetics and Breeding, 50, 239-248. Kuznetsova, E., Shayapova, L., Klimova, E., Nasrullaeva, G., Brindza, J., Stolyarov, M., Zomiteva, G., Bychkova, T., Gavrilina, V. & Kuznetsova, E. (2019). Composition, quality characteristics and microstructure of the grain Triticum Dicoccum. Potravinarstvo Slovak Journal of Food Sciences, 13 (1), 933-940. https://doi.org/10.5219/1174 Li, Y. F., Wu, Y., Wang, T., Li, L. R., Lu, L., Zhang, C. Y., Li, J. M., Zhang, L., Liu, Z. H. & Zheng, S. G. (2015). Polyphenol oxidase activity and yellow pigment content in Aegilops tauschii, Triticum turgidum, Triticum aestivum, synthetic hexaploid wheat and its parents. Journal of Cereal Science, 65, 192-201. https://doi.org/10.1016/j.jcs.2015.07.011 Longin, C. F. H., Sieber, A. N. & Reif, J. C. (2013). Combining frost tolerance, high grain yield and good pasta quality in durum wheat. Plant Breeding, 132, 353–358. Magallanes-Lopez, M. A., Ammar, K., Morales-Dorantes, A., Gonzalez-Santoyo, H., Crossa, J. & Guzman, C. (2017). Grain quality traits of commercial durum wheat varieties and their relationships with drought stress and glutenins composition. Journal of Cereal Science, 75, 1–9. https://doi.org/10.1016/j.jcs.2017.03.005 Martini, D., Taddei, F., Ciccoritti, R., Pasquini, M., Nicoletti, I., Corradini, D. & D’Egidio, M.G. (2015). Variation of total antioxidant activity and of phenolic acid, total phenolics and yellow coloured pigments in durum wheat (Triticum turgidum L. var. durum) as a function of genotype, crop year and growing area. Journal of Cereal Science, 65, 175–185. Martinez-Pena, R., Rezzouk, F.Z., Díez-Fraile, M.C., Nieto-Taladriz, M.T., Araus, J.L., Aparicio, N. & Vicente, R. (2023). Genotype-by-environment interaction for grain yield and quality traits in durum wheat: Identification of ideotypes adapted to the Spanish region of Castile and Leon. European Journal of Agronomy, 151, 126951. Meena M. & Samal, S. (2019). Alternaria host-specific (HSTs) toxins: an overview of chemical characterization, target sites, regulation and their toxic effects. Toxicology Reports, 6, 745-758. https://doi.org/10.1016/j.toxrep.2019.06.021 Mefleh, M., Conte, P., Fadda, C., Giunta, F., Piga, A., Hassoun, G. & Motzo, R. (2019). From ancient to old and modern durum wheat varieties: interaction among cultivar traits, management, and technological quality. Journal of the Science of Food and Agriculture, 99, 2059-2067. https://doi.org/10.1002/jsfa.9388 Mohammadi, М., Mirlohi, А., Majidi, M.М., Esmaeilzadeh Moghaddam, М., Rabbani, F. & Noori, F. (2021). Genetic interaction and inheritance of important traits in durum (Triticum turgidum ssp. durum) × emmer (Triticum turgidum ssp. dicoccum) crosses under two water regimes. Crop and Pasture Science, 72(11), 874–890. https://doi.org/10.1071/CP21118 Mohammadi, M. & Mohammadi, R. (2024). Potential of tetraploid wheats in plant breeding: A review. Plant Science, 346, 112155. https://doi.org/10.1016/j.plantsci.2024.112155 Mohan, B. H. & Malleshi, N. G. (2006). Characteristics of native and enzymatically hydrolyzed common wheat (Triticum aestivum) and dicoccum wheat (Triticum dicoccum) starches. Eur Food Res Technol., 223:355–361. Molnár-Láng, M. (2015). The crossability of wheat with rye and other related species. In Alien Introgression in Wheat; Molnár-Láng, M., Ceoloni, C., Doležel, J., Eds.; Springer: Cham, Switzerland, pp. 103–120. Mishra, P. C., Kurmwanshi, S. M. & Soni, S. N. (1996). Evaluation of Triticum species under wheat improvement programme. Journal of Soils and Crops, 6: 200-201. Oktem, A. G. & Oktem, A. (2019). Effect of Semi-arid Environmental Conditions to Quality of Durum Wheat Genotypes (Triticum turgidum L. var. durum). Asian Journal of Agricultural and Horticultural Research, 3(1): 1-10. Padalino, L., Mastromatteo, M., Lecce, L., Spinelli, S., Contò, F. & De Nobile, M.A. (2014). Effect of durum wheat cultivars on physico-chemical and sensory properties of spaghetti. Journal of the Science of Food and Agriculture, 94 (11), 2196-2204.https://doi.org/10.1002/jsfa.6537 Palombieri, S., Bonarrigo, M., Cammerata, A., Quagliata, G., Astolf, S., Lafiandra, D., Sestili, F. & Masci, S. (2023).Characterization of Triticum turgidum sspp. durum, turanicum, and polonicum grown in Central Italy in relation to technological and nutritional aspects. Frontiers in Plant Science, 14:1269212.https://doi.org/10.3389/fpls.2023.1269212 Petrenko, V., Spychaj, R., Prysiazhniuk, O., Sheiko, T. & Khudolii, L. (2018). Evaluation of three wheat species (Triticum Aestivum L., T. Spelta L., T. Dicoccum (Schrank) Schuebl) Commonly used in organic cropping systems, considering selected parameters of technological quality. Romanian Agricultural Research, 35, 255-264. Pradhan, G. P., Prasad, P. V. V., Fritz, A. K., Kirkhan, M. B. & Gill, B. S. (2012). Response of Aegilops species to drought stress during reproductive stage of development. Funct. Plant Biol., 39, 51–59. Ruan, Y., Comeau, A., Langevin, F., Hucl, P., Clarke, J.M., Brule-Babel, A. & Pozniak, C.J. (2012). Identification of novel QTL for resistance to Fusarium head blight in a tetraploid wheat population. Genome, 55 (12): 853–864. DOI: 10.1139/gen-2012-0110 Romena, M., Najaphy, A., Saeidi, M. & Khoramivafa, M. (2022). Identification of superior wheat genotypes using multiple-trait selection methods based on agronomic characters and grain protein content under rain-fed conditions. Genetika, 54 (1): 15-26. https://doi.org/10.2298/GENSR2201015R Ruiz, M., Bernal, G. & Giraldo, P. (2018). An update of low molecular weight glutenin subunits in durum wheat relevant to breeding for quality. Journal of Cereal Science, 83, 236-244. https://doi.org/10.1016/j.jcs.2018.09.005 Ruiz, M. & Giraldo, P. (2021). The influence of allelic variability of prolamins on gluten quality in durum wheat: An overview. Journal of Cereal Science, 101, 103304. Sieber, A. N., Würschum, T. & Longin, C. F. H. (2015). Vitreosity, its stability and relationship to protein content in durum wheat. Journal of Cereal Science, 61, 71-77. Simeone, R., Sciancalepore, A. & Simonetti, M.C. (1998). Identification of powdery mildew resistance genes in tetraploid wheats. Ewac Newsletter, pp. 110-113. Sourour, A., Afef, O., Salah, B., Mounir, R. & Mongi, B. Y. (2018). Correlation between agronomical and quality traits in durum wheat (Triticum durum Desf.) germplasm in semi arid environment. Adv Plants Agric Res., 8(6), 612‒615. Stankova, P., Rekika, D., Zaharieva, M. & Monneveux, P. (1995). Improvement of durum wheat formultiple stress tolerance: Potential interest of Aegilops sp. In: Fibre and Cereal Crops Problems. Cotton and Durum Wheat Research Institute, Chirpan, Bulgaria, pp. 46-56. Suchowilska, E., Bienkowska, T., Szablewska, K.S. & Wiwart, M. (2020). Concentrations of Phenolic Acids, Flavonoids and Carotenoids and the Antioxidant Activity of the Grain, Flour and Bran of Triticum polonicum as Compared with Three Cultivated Wheat Species. Agriculture, 10, 591. https://doi.org/10.3390/agriculture10120591 Tanksley S. D. & Nelson J. C. (1996). Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor. Appl. Genet., 92, 191-203. Тodorovska, E., Hadzhiivanova, B., Bozhanova, V., Dechev, D., Muhovski, Y., Panchev, I., Abu-Mhadi, N., Peycheva, V. & Ivanova, A. (2013). Molecular and Phenotypic Characterization of Advanced Backcross Lines Derived from Interspecific Hybridization of Durum Wheat. Biotechnology & Biotechnological Equipment, 27(3), 3760-3771. Toti E., Chen, C. Y. O., Palmery, M., Valencia, D. V. & Peluso, I. (2018). Non-provitamin A and provitamin A carotenoids as immunomodulators: recommended dietary allowance, therapeutic index, or personalized nutrition? Oxid. Med. Cell. Longev., Article 4637861. doi: 10.1155/2018/4637861 Tiwari, V. K., Rawat, N., Singh, N., Randhawa, G. S., Singh, K., Chhuneja, P., ... & Dhaliwal, H. S. (2008). Evaluation and utilization of Aegilops germplasm for biofortification of wheat for high grain iron and zinc content. In: Proceedings of the 11th International Wheat Genetics Symposium, 24–29 Aug., Brisbane, Qld., Australia (R. Appels, et al., Eds.), Sydney University Press, Sydney, 305-309. Tran, K. D., Konvalina, P., Capouchova, I., Janovska, D., Lacko-Bartosova, M., Kopecky, M. & Tran, P. X. T. (2020). Comparative Study on Protein Quality and Rheological Behavior of Different Wheat Species. Agronomy, 10(11), 1763 https://doi.org/10.3390/agronomy10111763 Wang, K., Dupuis, B. & Fu, B. X. (2017). Gluten aggregation behavior in high-shear-based glutopeak test: Impact of flour water absorption and strength. Cereal Chemistry, 94, 909–915. Wang, K. & Fu, B. X. (2020). Inter-Relationships between Test Weight, Thousand Kernel Weight, Kernel Size Distribution and Their Effects on Durum Wheat Milling, Semolina Composition and Pasta Processing Quality. Foods, 9, 1308. doi:10.3390/foods9091308 Wang, K., Taylor, D., Chen, Y., Suchy, J. & Fu, B. X. (2021). Effect of Kernel Size and Its Potential Interaction with Genotype on Key Quality Traits of Durum Wheat. Foods, 10, 2992. https://doi.org/10.3390/foods10122992 Xynias, I. N., Mylonas, I., Korpetis, E. G., Ninou, E., Tsaballa, A., Avdikos, I. D. & Mavromatis, A. G. (2020). Durum wheat breeding in the Mediterranean region: Current status and future prospects. Agronomy, 10 (3), 432. https://doi.org/10.3390/agronomy10030432 Zaim, M., El Hassouni, K., Gamba, F., Filali-Maltouf, A., Belkadi, B., Sourour, A., Amri, A., Nachit, M., Taghouti, M. & Bassi, F. M. (2017). Wide crosses of durum wheat (Triticum durum Desf.) reveal good disease resistance, yield stability, and industrial quality across Mediterranean sites. Field Crops Research, 214, 219–227. https://doi.org/10.1016/j.fcr.2017.09.007
|
|
| Дата на публикуване: 2025-02-27
Свали пълен текст