Дифузни източници на замърсяване на подземните води в интензивен земеделски район в Южна България
Цецка Симеонова
Резюме: Проведен е мониторинг на подземни и повърхностни води през периода 2018-2019 г., в с. Цалапица, гр. Пловдив, върху Алувиално-ливадна почва (Fluvisol). В схемата на изследване са включени различни начини на земеползване, които отразяват голямото разнообразие от антропогенно натоварване на агроекосистемите при земеделски дейности – овощни градини, лозя, оризища, обработваеми площи с отглеждане на полски и интензивни култури (т. нар. дифузни или неточкови източници). Водни проби от обследваните кладенци и повърхностните води в пилотния обект са вземани два пъти годишно. Установено е, че водите от кладенците под обработваемите земи се характеризират в повечето случаи с алкална реакция и съдържание на химични елементи под или близо до ПДК. Наблюдавано е, че повечето от изследваните елементи са повлияни от антропогенно натоварване и различното земеползване. Резултатите показват, че съдържанието на нитратен азот в плитките подземни води, варира в широки граници и зависи от разположението на изследваните кладенци. Установена е следната последователност в промяната на концентрациите на нитрати - зеленчукови площи > оризови полета > обработваеми ниви > трайни насаждения и др., в зависимост от начините на земеползване. Необходимо е провеждане на дългосрочен мониторинг за разбирането на динамиката и трансформацията на азот във водите и протичащите сложни биохимични процеси в агроекосистемата, особено в уязвими райони с леки по механичен състав почви, плитки подземни води и при интензивна земеделска дейност.
Ключови думи: антропогенно натоварване; химичен състав; дифузни източници; подземни води; земеползване
Цитиране: Simeonova, Ts. (2024). Diffuse pollution sources of groundwater in an intensive agricultural area in Southern Bulgaria. Bulgarian Journal of Crop Science, 61(1), 59-67 (Bg).
Литература: (click to open/close) | Ahmad, W., Iqbal, J., Nasir, M. J., Ahmad, B., Khan, M.T., Khan, S.N. &…Adnan S. (2021). Impact of land use/land cover changes on water quality and human health in district Peshawar Pakistan. Sci Rep., 11, 16526 (2021). https://doi.org/10.1038/s41598-021-96075-3 Arinushkina, E.V. (1970). Guidelines of Chemical Analy¬sis of Soil. Izd. MGU, Moskow, 1970, p. 487 (Ru). Bijay-Singh & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Appl. Sci., 3, 518. https:// doi.org/10.1007/s42452-021-04521-8 Castellano, M. J. & David, M. B. (2014). Long-term fate of nitrate fertilizer in agricultural soils is not neces¬sarily related to nitrate leaching from agricultural soils. Proc Natl Acad Sci., 111:E766–E766. https://doi. org/10.1073/pnas.1321350111 Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrate from agricultural sources. European Councel, 1991. https://environment.ec.europa.eu/topics/water/nitrates_en Guo, F., Jiang, G., Polk, J. S., Huang, X., & Huang, S. (2015). Resilience of groundwater impacted by land use and climate change in a karst aquifer, South Chi¬na. Water Environment Research, 87(11), 1990-1998. Ijioma, U. D. (2021). Delineating the impact of urbaniza¬tion on the hydrochemistry and quality of groundwa¬ter wells in Aba, Nigeria. J. Contam. Hydrol., 240, 103792, 10.1016/j.jconhyd.2021.103792 Jankowski, K., Neill, C., Davidson, E. A., Macedo, M. N., Costa, C., Galford, G. L., Santos, L. M., Lefebvre, P. Nunes, D., Cerri, C. E. & McHorney, R. (2018). Deep soils modify environmental conse¬quences of increased nitrogen fertilizer use in inten¬sifying Amazon agriculture. Sci Rep, 8:13478. https:// doi.org/10.1038/s41598-018-31175-1 Kourakos, G., Klein, F., Cortis, A. & Harter, T. (2012). A groundwater nonpoint source pollution modeling framework to evaluate long-term dynamics of pollutant exceedance probabilities in wells and other discharge locations. Water Resours Research, 48(6), https://doi. org/10.1029/2011WR010813 Lee, Ch-M., Kim, Y., Kim, M. Su., Kim, H-K. & Hamm, S-Y. (2022). Characterizing shallow groundwater contamination depending on different land use types. Episodes, 45(4), 403-415, https://doi.org/10.18814/epii-ugs/2021/021036 Levicharska, E. 1991. Climate of Bulgaria. – Publiching House of Bulgarian Academy of Science, Sofia, p. 449 (Bg). Liu, M., Xiao, Ch., Liang, X. & Wei, H. (2022). Re¬sponse of groundwater chemical characteristics to land use types and health risk assessment of nitrate in semi-arid areas: A case study of Shuangliao City, Northeast China. Ecotoxicology and Environmental Safety, 236, 113473. https://doi.org/10.1016/j.ecoenv.2022.113473 Mateva Hr., Stoichev, D. & Ahchiiski, P. (1982). Study of the migration of nitrates under the conditions of in-tensive agriculture in different soil types. Proceedings of Second Symposium “Technical progress in water supply and purification of natural waters”, Varna, Bulgaria, September, 1982, 1, 28-39 (Bg). Nóbrega, R. L., Guzha, A. C., Lamparter, G., Amorim, R. S., Couto, E. G., Hughes, H. J., ... & Gerold, G. (2018). Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon bi¬omes. Science of the Total Environment, 635, 259-274. Nyilitya, B., M ureithi, S. & B oeckx, P. (2020). Land use controls Kenyan riverine nitrate discharge into Lake Victoria - evidence from Nyando, Nzoia and Sondu Miriu river catchments. Isot. Environ. Health Stud., 56 (2), 170-192, 10.1080/10256016.2020.1724999 Page, A. L., Miller, R. H. & Keeney, D. R. (1982). Meth¬ods of Soil Analysis. Part 2. Chemical and Microbio¬logical Properties. American Society of Agronomy. In: Soil Science Society of America, Vol. 1159, Madison, Wisconsin, USA. Regulation № 9 of 16.03.2001 o n t he q uality o f w ater intended for drinking and domestic purposes (Bg). Regulation № 2 of 13.09.2007 on the protection of waters against pollution by nitrates from agricultural sources, Official Gazette 27 /11.03.2008 (Bg). Shi, Z., Liao, F., Wang, G., Xu, Q. Mu, W. & Sun, X. (2017). Hydrogeochemical characteristics and evolution of hot springs in Eastern Tibetan Plateau Geothermal Belt, Western China: insight from multivariate statistical analysisр. Geofluids, 2017, 1-11, 10.1155/2017/6546014 Siebert, S., Burke, J., Faures, J.-M., Frenken, K., Hoogeveen, J., Döll, P. & Portmann, F. T. (2010). Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci., 14, 1863–1880, doi:10.5194/ hess-14-1863-2010. Simeonova, Ts., Benkova, M., Nenova, L. & Stoicheva, D. (2014). Impact of agricultural practices on the nitrate contain in groundwater and surface water. Proceedings of Second Scientific Conference with International Participation „Theory and Practice in Agriculture“, 22-24.11.2013, Yundola, Bulgaria, 269-274 (Bg). Stoicheva, D., Kercheva, M. & Stoichev, D. (2006). Nitro¬gen distribution in vadose zonGeotechnics and e some Bulgarian soils, 5 th ICEG Environmental Geotechnics and Opportunities, Challenges and Responsibilities for EG: Proceedings of the 5 ICEG, UK, 1256-1263. Stoichev, D., Atanassov, I. & Glogov, L. (1980). Vertical movement of nitrogen in Alluvial-meadow soil. Soil Science and Agrochemistry, v. 4, 10-17 (Bg). Stoichev, D. (1997). Some ecological aspects of the an¬thropogenic loading on the soils. Dr Sc. Dissertation, Sofia, Bulgaria, 312 (Bg). Wang, H., Yiang, Q., Ma, H. & Liang, Ji. (2021). Chemical compositions evolution of groundwater and its pollution characterization due to agricultural activities in Yinchuan Plain, northwest China. Envi¬ronmental Research, v.200, https: //doi.org/10.1016/j. envres.2021.111449 Wang, G., Cuicui Lv., Congke Gu, Yang, Yu., Yang, Zh., Zhang, Zh. & Tang, Ch. (2022). Pollutants Source Assessment and Load Calculation in Baiyang¬dian Lake Using Multi-Model Statistical Analysis. Water, 14 (21), 3386. https://doi.org/10.3390/w14213386 WRB (2015) World Reference Base for Soil Resources 2014, Update 2015. IUSS Working Group International Soil Classification System for Naming Soils and Cre¬ating Legends for Soil Maps. World Soil Resources Reports No. 106. FAO, Rome. Yang, Y., Yan, B. & Shen, W. (2010). Assessment of point and nonpoint sources pollution in Songhua River Basin, Northeast China by using revised water quality model. Chin. Geogr. Sci. 20, 30–36 (2010). https://doi. org/10.1007/s11769-010-0030-3 Yue, F.-J., Li, S.-L., Liu, C.-Q., Zhao, Z.-Q. & Ding, H. (2017). Tracing nitrate sources with dual isotopes and long term monitoring of nitro-gen species in the Yellow River, China. Scientific Reports, v. 7, 8537. doi:10.1038/ s41598-017-08756-7 Zhang, H., Gao, Z., Shi, M., Fang, S., Xu, H., Cui, Y. & Liu, J. (2019). Study of t he effects of land u se on hydrochemistry and soil microbial diversity Wa¬ter, 11 (3) (2019), 10.3390/w11030466
|
|
| Дата на публикуване: 2024-02-27
Свали пълен текст