https://doi.org/10.61308/CDGP9457

Fertilization of wheat with liquid organic fertilizers under the conditions of a pot vegetation experiment

Vesselin Koutev¹, Asen Nikolov²*, Zdravka Petkova³

¹University of Forestry, 10 "Kliment Ohridski" Bul., Sofia, Bulgaria

Agricultural Academy - Sofia, ²Institute of Animal Sciences – Kostinbrod, TS. Pochivka 1, 2232 Kostinbrod, Bulgaria

Agricultural Academy - Sofia, ³ISSAPP "Nikola Poushkarov", 1331 Sofia, 7 Shose Bankya Str., Bulgaria ^{*}E-mail: *asen30@abv.bg*

Citation: Koutev, V., Nikolov, A., & Petkova, Z. (2024). Fertilization of wheat with liquid organic fertilizers under the conditions of a pot vegetation experiment. *Bulgarian Journal of Crop Science*, *61*(2) 3-10

Abstract: Vegetation experiment was carried out to determine the efficiency of liquid organic fertilizers application in the initial phases of wheat development. Three types of liquid organic fertilizer with single and double application (in 14 days) were tested -"Extra force", "Zinovii Corn" and "Zinovii Oil". All studied fertilizers application have a positive results. Compared to the control treatment, tested organic fertilizers show good results with one application and significantly better results with two applications. "Extra force" and "Zinovii Corn" when applied twice had double effect on yields and height of wheat plants.

Keywords: wheat; fertilization; liquid organic fertilizers

INTRODUCTION

Agricultural intensification and chemigation provokes the annual introduction of ever higher amounts of inorganic fertilizers leads to contamination of soil, groundwater and plant production. Environmentally harmful chemical elements are selectively accumulated with longer use, which cause a number of diseases in animals and man (Draganov et al., 1988; Brady & Weil, 2002; Das, 2011; Mukhtar et al., 2013).

An alternative to chemigation in agriculture is the introduction and use of organic products that are used in organic farming not only as a substitute for inorganic fertilization (Vlahova, 2013), but also as a means of biological protection of plants from diseases (Yankova et al., 2009).

Nowdays, fertilizerformulationsnearly always are enrichedwithmicro-elements. According to Ivanov et al. (2019), application of foliar fertilizer containing Zn showed positive effects on maize yield and quality. Application of foliar fertilizers showed an improvement on maize aboveground and underground parts (Balawejder et al., 2019). Thus, soil deficiency in micro-elements can be successfully managed by foliar fertilizing and must be the preferred way to apply microelements (Tejada et al., 2018). In some cases, fertilizers and herbicides can be combined in order to help crops to overcome possible herbicide stress (Brankov et al., 2020).

In general, under the influence of foliar input of macro- and micronutrients, yields increase and the quality of the resulting production is improved (Fernandez & Eichert, 2009; Haytova, 2013).

The aim of the study is to determine the effectiveness of organic liquid fertilizers "Extra force", "Zinovii Corn" and "Zinovii Oil". They were obtained by extraction of humic substances from biocompost under appropriate conditions (pH, temperature, homogenization) allowing their more complete extraction and enrichment with trace elements.

MATERIALS AND METHODS

The experiment wascarried out in the period September 2019 – September 2020.

The soil is Leached Cinnamon Forest Soil, typical for the area of the Sofia area (550m altitude). These soils were found to be medium to heavy in mechanical composition. The waterphysical properties of this soil subtype are on average for the layer 0-50 cm depth they are as follows: Field capacity (FC) – 22.0% by weight of the absolutely dry soil; soil volume weight– 1.47 g/cm³ and wilting point humidity – 10.00% of the weight of the absolutely dry soil.

The vegetation experience is set and derived to establish the efficiency of liquid organic fertilizers application in the initial stages of wheat development. The pots have a capacity of -1800 g soil. Test crop is wheat sown in October 2019.

The liquid organic fertilizer "Extra force" was obtained by alkaline extraction of humic substances from manure with litter under appropriate conditions (pH, temperature, homogenization) allowing their more complete extraction. On the basis of this fertilizer, a formulation with seven trace elements (Mg, Zn, Cu, Mo, B, Fe and Mn) "Zinovii grand" was prepared. An increased content of Zn and B was added to the basic formulation of the trace elements "Zinovii Corn" and "Zinovii Oil".

Treatments with two foliar applications in 14 days during wheat growing season were applied. The results of the experiments carried out are the basis for the effectiveness assessment of the products and for determining recommended fertilization rates.

Inorganic complex fertilizer nitrogen, phosphorus and potassium (NPK = 1:1:1) was applied into the soil at the rate of N (100mg.kg^{-1} soil)

A total of seventreatments with three replicates and four plants in each pot were studied.

Treatments:

1. Control –(Soil + NPK)

	0	0		11 1	0	
Treatments	Weight Mean g	Weight difference, g	%	Height Mean cm	Height difference, cm	%
Control – (Soil + NPK)	0,237			14,3		
"Extra force" – one treatment	0,328	0,090	38,1	18,1	3,8	26,9
"Extra force" – two treatments	0,470	0,233	97,9	22,9	8,6	60,3
"Zinovii Corn" – one treatment	0,323	0,085	35,9	17,6	3,3	23,2
"Zinovii Corn" – two treatments	0,432	0,195	82,0	21,1	6,8	48,0
"Zinovii Oil" – one treatment	0,354	0,117	49,2	19,2	5,0	34,7
"Zinovii Oil" – two treatments	0,347	0,110	46,2	19,4	5,2	36,3

Table 1. Increase in wheat fresh weight and height under influence of applied liquid organic fertilizers

Table 2. Descriptive statistics for the weight of wheat plant	ts (g/pot) depending on the fertilization treatment
---	---

Treatments	Mean	Stand. deviation	Coeff. of variation	Minimum	Maximum
Control – (Soil + NPK)	0,237412	0,1248830	52,6018%	0,022	0,440
"Extra force" – one treatment	0,327875	0,0715829	21,8324%	0,207	0,464
"Extra force" – two treatments	0,469938	0,1738440	36,993%	0,172	0,888
"Zinovii Corn" – one treatment	0,322600	0,0801666	24,8502%	0,185	0,477
"Zinovii Corn" – two treatments	0,432167	0,1754760	40,6038%	0,144	0,717
"Zinovii Oil" – one treatment	0,354267	0,0812091	22,9232%	0,223	0,480
"Zinovii Oil" – two treatments	0,347000	0,0800275	23,0627%	0,228	0,480

- 2. "Extra force" one treatment (EF1)
- 3. "Extra force" two treatments (EF2)
- 4. "Zinovii Corn" one treatment (ZC1)
- 5. "Zinovii Corn" two treatments (ZC2)
- 6. "Zinovii Oil" one treatment (ZO1)
- 7. "Zinovii Oil"- two treatments (ZO2)

Data were processed statistically with ANO-VA.

RESULTS AND DISCUSSION

The Increase in wheat fresh weight and height under influence of applied liquid organic fertilizers is double when applied twice for "Extra force" and "Zinovii Corn". No difference exists for "Zinovii Oil" with one and two treatments (Table 1).

Table 2 presents statistics analyses of plant weight variation in the fertilization treatments studied. The variation coefficient for the total data is just over 38% and is relatively low, which shows of a satisfactory accuracy of the experiment.

The results in Table 3 show statistical indicators of the wheat plants weight in each of the 7 treatments of the experiment. The one-factor analysis ANOVA was designed to compare the mean values of the different treatments.

Table 3. ANOVA table for weight of wheat plants at different fertilization treatments

Source	Sum of squares	Mean squared	F-Ratio	P-Value
Between groups	0,581908	0,0969847	6,50	0,0000
In the groups	1,58155	0,0149203		
Total (Corr.)	2,16346			

Table 4. Mean values for weight of wheat plants from one fertilization treatment to another at the 95.0% confidence interval

Treatments	Mean	Std. Error	Lower Limit	Upper limit
Control – (Soil + NPK)	0,237412	0,0296254	0,19588	0,278944
"Extra force" – one treatment	0,327875	0,0305371	0,285065	0,370685
"Extra force" – two treatments	0,469938	0,0305371	0,427127	0,512748
"Zinovii Corn" – one treatment	0,354267	0,0315386	0,310052	0,398481
"Zinovii Corn" – two treatments	0,347	0,0305371	0,30419	0,38981
"Zinovii Oil" – one treatment	0,3226	0,0315386	0,278386	0,366814
"Zinovii Oil" – two treatments	0,432167	0,0287907	0,391805	0,472529

	Table of Means	for Weight,	g by Treatn	nent with 95.0	percent LSD	intervals
--	----------------	-------------	-------------	----------------	-------------	-----------

Treatments	Count	Mean	Stnd. error (pooled s)	Lower limit	Upper limit
Control	17	0,237412	0,0296254	0,19588	0,278944
EF1	16	0,327875	0,0305371	0,285065	0,370685
EF2	16	0,469938	0,0305371	0,427127	0,512748
ZC1	15	0,354267	0,0315386	0,310052	0,398481
ZC2	16	0,347	0,0305371	0,30419	0,38981
Z01	15	0,3226	0,0315386	0,278386	0,366814
ZO2	18	0,432167	0,0287907	0,391805	0,472529
Total	113	0,356504			

 Table 5. Multi-rank Wheat Plant Weight Test by

 Treatment

 Method: 95.0 percent LSD

Treatments	Mean	Homogeneous Groups
Control – (Soil + NPK)	0.237412	А
"Zinovii Oil" – one treatment	0.3226	AB
"Extra force" – one treatment	0.327875	В
"Zinovii Corn" – two treatments	0.347	В
"Zinovii Corn" – one treatment	0.354267	BC
"Zinovii Oil" – two treatments	0.432167	CD
"Zinovii Oil" – two treatments	0.469938	D

Contrast	Sig.	Difference	+/- Limits
Control - EF1	*	-0,0904632	0,0843521
Control - EF2	*	-0,232526	0,0843521
Control - ZC1	*	-0,116855	0,0857884
Control - ZC2	*	-0,109588	0,0843521
Control - ZO1		-0,0851882	0,0857884
Control - ZO2	*	-0,194755	0,0819024
EF1 - EF2	*	-0,142063	0,0856207
EF1 - ZC1		-0,0263917	0,087036
EF1 - ZC2		-0,019125	0,0856207
EF1 - ZO1		0,005275	0,087036
EF1 - ZO2	*	-0,104292	0,0832083
EF2 - ZC1	*	0,115671	0,087036
EF2 - ZC2	*	0,122937	0,0856207
EF2 - ZO1	*	0,147337	0,087036
EF2 - ZO2		0,0377708	0,0832083
ZC1 - ZC2		0,00726667	0,087036
ZC1 - ZO1		0,0316667	0,0884286
ZC1 - ZO2		-0,0779	0,084664
ZC2 - ZO1		0,0244	0,087036
ZC2 - ZO2	*	-0,0851667	0,0832083
ZO1 - ZO2	*	-0,109567	0,084664

** indicates a statistically significant difference*

Since the P-value of the F-test was lower than 0.05, it had a statistically significant difference of wheat plants from one fertilizing treatments to another at the 95.0% confidence interval (Table

4). The analysis of these results using a multirank test shows us which pairs of treatments have a statistically proven difference (Table 5).

Table 5 for a multi-rank test shows the average weight of wheat plants for each fertilization treatment. The standard error for each mean is also shown, which is an indicator of the sampling variation. The table also shows the interval of variation at each average. The intervals shown are based on Fisher's least significant difference (LSD). They are designed so that if two middle ones are the same, then their intervals will be covered in 95.0% of cases. All treatments with organic fertilizer are statistically significant from the control. Following pairs of applied fertilizers have statistically significant difference: "Extra force" - one treatment and "Extra force" - two treatments; "Extra force" - one treatment and "Zinovii Oil" - two treatments; "Extra force" - two treatments and "Zinovii Oil" - one treatment; "Extra force" - two treatments and "Zinovii Corn" - one treatment; "Extra force" - two treatments and "Zinovii Corn" - two treatments; "Zinovii Oil" - one treatment and "Zinovii Oil" - two treatments.

In a multi-rank test, these intervals are used to determine which averages are different from which others. Graphically, these differences are presented in Figure 1.

Table 6 presents statistical analyses for the variation of plant height at different fertilization treatments. The coefficient of variation is relatively low (below 30%), the refore accuracy of the experiment is in the best range.

The results in Table 7 show statistical indicators of the height of wheat plants at each of the 7 fertilization treatments. As for plant weights onefactor analysis ANOVA was designed to compare the average values of the different treatments.

The one-factor analysis ANOVA decomposes plant height variation between two components: an intergroup component and an intragroup component. F-Ratio, which in this case is equal to 11.16. Since the P-value of the P-test was lower than 0.05 it therefore had a statistically significant difference of two mean of the height of maize plants from one fertilization treatment to another at the 95.0% confidence interval (Table 8). All treatments with organic fertilizer are statistically significant from the control for plant height. Statistically significant difference exists for following pairs applied fertilizers: "Extra force" – one treatment and "Extra force" – two treatments; "Extra force" – one treatment and "Zinovii Oil" – two treatments; "Extra force" – two treatments and "Zinovii Oil" – one treatment; "Extra force" – two treatments and "Zinovii Corn" – one treat-

Figure 1. Weight of wheat plants under different fertilization treatments

Table 6. Descriptive statistics for the height of wheat plants (in cm) depending on the fertilization option

Treatments	Mean	Std. Unlock.	Coef. of variation	Minimum	Maximum
Control – (Soil + NPK)	14.2647	4.64044	32.5309%	4.9	20.4
"Extra force" – one treatment	18.1063	1.41491	7.81446%	15.3	20.0
"Extra force" – two treatments	22.8687	3.95941	17.3136%	16.5	31.3
"Zinovii Corn" – one treatment	17.5733	1.59305	9.06516%	15.5	20.0
"Zinovii Corn" – two treatments	21.1111	4.18413	19.8196%	13.2	29.0
"Zinovii Oil" – one treatment	19.22	2.58324	13.4404%	15.8	25.5
"Zinovii Oil" – two treatments	19.4437	3.13177	16.1068%	11.5	25.0

Table 7. ANOVA table for height of wheat plants underdifferentfertilizationoptions

	-			
Source	Sum of squares	Mean squared	F-Ratio	P-Value
Between groups	747.769	124.628	11.16	0.0000
In the groups	1183.41	11.1643		
Total (Corr.)	1931.18			

Bulgarian Journal of Crop Science, 2024, 61 (2)

ment; "Extra force" – two treatments and "Zinovii Corn" – two treatments; "Zinovii Oil" – one treatment and "Zinovii Oil" – two treatments.

The analysis of these results using a multirank test shows us which pairs of treatments have a statistically proven difference (Table 9).

Table 8, for a multi-rank test shows the average plant height for each fertilization treatment. The standard error for each mean is also shown, which is an indicator of the sampling variation. The table also shows the interval of variation at each average. The intervals shown are based on Fisher's least significant difference (LSD). They are designed so that if two middle ones are the same, then their intervals will be covered in 95.0% of cases. In a multi-rank test, these intervals are used to determine which averages are different from which others. Graphically, these differences are presented in Figure 2.

CONCLUSIONS

1. In the conditions of the experiment, the best effect on yields and plant height of wheat has "Extra Force" and "Zinovii Corn" applied twice.

Table 8. Mean values for wheat plant height from one fertilization treatment to another at 95.0% confidence interval

Treatments	Mean	Stand. error	Lower Limit	Upper limit
Control	14.2647	0.810384	13.1286	15.4008
EF1	18.1063	0.835325	16.9352	19.2773
EF2	22.8687	0.835325	21.6977	24.0398
ZO1	17.5733	0.86272	16.3639	18.7828
ZO2	21.1111	0.787552	20.007	22.2152
ZC1	19.22	0.86272	18.0105	20.4295
ZC2	19.4437	0.835325	18.2727	20.6148

Figure 2. Height of wheat plants in different treatments of fertilizer1

2. The tested fertilizers and the different number of their application lead to positive results. The differences between control plants and

Table 9. Multi-rank wheat plant height test bytreatments.**Method:** 95.0 percent LSD

ference percent LSD			
Treatments	Mean	Homogeneous Groups	
Control – (Soil + NPK)	14.2647	А	
"Zinovii Oil" – one treatment	17.5733	В	
"Extra force" – one treatment	18.1063	В	
"Zinovii Corn" – one treatment	19.22	BC	
"Zinovii Corn" – two treatments	19.4437	BC	
"Zinovii Oil" – two treatments	21.1111	CD	
"Extra force" – two treatments	22.8687	D	

Contrast	Signi- ficance	Difference	+/- limits
Control - EF1	*	-3.84154	2.3074
Control - EF2	*	-8.60404	2.3074
Control - ZO1	*	-3.30863	2.34669
Control - ZO2	*	-6.84641	2.24039
Control - ZC1	*	-4.95529	2.34669
Control - ZC2	*	-5.17904	2.3074
EF1 - EF2	*	-4.7625	2.3421
EF1 - ZO1		0.32917	2.38082
EF1 - ZO2	*	-3.00486	2.27611
EF1 - ZC1		-1.11375	2.38082
EF1 - ZC2		-1.3375	2.3421
EF2 - ZO1	*	5.29542	2.38082
EF2 - ZO2		1.75764	2.27611
EF2 - ZC1	*	3.64875	2.38082
EF2 - ZC2	*	3.425	2.3421
ZO1 - ZO2	*	-3.53778	2.31593
ZO1 - ZC1		-1.64667	2.41891
ZO1 - ZC2		-1.87042	2.38082
ZO2 - ZC1		1.89111	2.31593
ZO2 - ZC2		1.66736	2.27611
ZC1 - ZC2		-0.22375	2.38082

* indicates a statistically significant difference

plants influenced by the action of foliar fertilizers are statistically proven.

3. Compared to the control option, all tested organic fertilizers give good results with one treatment and significantly better results with two treatments.

REFERENCES

- Balawejder, M., Matlok, N., Gorzelany, J., Antos, P., Pieniazek, M., Witek, G., & Szostek, M. (2019). Foliar fertilizer based on calcined bones, boron and molybdenum—A study on the development and potential effects on maize grain production. Sustainability,11, 5287.
- Brady, N. C., & Weil, R. R. (2002). The nature and properties of soils. Pearson education. *Incorporation, New Jersey.*
- Brankov, M., Simic, M., Mesarovic, J., Kresovic, B., & Dragicevic, V. (2020). Integrated effects of herbicides and foliar fertilizer on corn inbred line. *Chil. J. Agric. Res.*80, 50–60.
- Das, D. K. (2011). Introduction to Soil Science. *Kalyani Publication, India,* (pp.645).
- Draganov, D., Donev, N., & Voynova, J. (1988). Basics of agro ecology. Blagoevgrad, *Higher Pedagogical Institute*, pp. 172-173.
- Fernandez, V., & Eichert, T. (2009). Uptake of hydrophilic solutes throughplantleaves: current state of knowledge and perspectives of foliar fertilization, *Critical Reviews* in Plant Sciences, v. 28. 183 182, pp. 36-68.
- Haytova, D. (2013). A review of foliar fertilization of some vegetables crops *Annual Review& Research in Biology* 3(4): 455-465, SCIENCEDOMAIN international, www.sciencedomain.org
- Ivanov, K., Tonev, T., Nguyen, N., Peltekov, A., & Mitkov, A. (2019). Impact of foliar fertilization with nanosized zinchydroxy nitrate on maize yield and quality. *Emir. J. Food Agric.* 597–604.
- Mukhtar, N., Hameed, M., Ashraf, M., & Ahmed, R. (2013). Modifications in stomatal structure and function in Cenchrusciliaris L. and Cynodondactylon (L.) pers. in response to cadmium stress. *Pakistan Journal* of Botany, 45(2), 351-357.
- Tejada, M., Rodríguez-Morgado, B., Paneque, P., & Parrado, J. (2018). Effects of foliar fertilization of a bio stimulant obtained from chicken feathers on maize yield. *Eur. J. Agron.*96, 54–59.
- Vlahova, V. (2013). Biofertilisers An Environmentally Friendly Approach in Modern Agriculture. *Journal of* agricultural science and forest science, vol. XII, No. 3–4, Sofia, 70-76.

Yankova, V., Markova, D., Todorova, V., & Velichkov,G. (2009). Biological Activity of Certain Oils inControl of Green Peach Aphid (Myzuspersicae Sulz.) on

Pepper. IV Balkan Symposium of Vegetables and Potatoes, Plovdiv, Bulgaria, 9-12 September 2008. *Actahorticulturae No 830, v.2,* 619 – 625.

Received: November 22 2023; Approved: February 05 2024; Published: April 2024