Improvement of buckwheat production in conditions of climate change
Vera Popović, Viliana Vasileva, Aleksandar Filipović, Vera Rajičić, Saša Vujović, Jelena Golijan Pantović, Nataša Ljubičić
Резюме: Buckwheat‘s hight nutritional and pharmacological qualities make this pseudo cereal, a potential functional food and a symbol of a healthy lifestyle. The demand for buckwheat grain has grown because of its excellent nutritional value, balanced amino acid content, and abundance of lysine and arginine. Proteins, dietary f iber, vitamins, flavonoids, fagopyrins, d-fagomine, and phenolic acids are among the bioactive components of buckwheat that have promising therapeutic effects against chronic illnesses. Every year, there are noticeable changes in the climate, increasing temperatures and decreasing precipitation. The productivity of plants, including buckwheat, is impacted by rising temperatures. All of the aforementioned factors make it necessary introduction of agrotechnical measures in order to increase buckwheat production, i.e. yield. The Novosadska buckwheat variety, was examined in this study, grown in four repetitions, in two variants: the control, which was without application of foliar nutrition, and the variant that included foliar nutrition, with Phyto Complex, phytocereals nutrition, in Bački Petrovac, Serbia. The following criteria were examined of ten plants from each repetition: plant height, leaf mass, grain yield, protein and oil content, ash content, starch, water and phenol content. Grain yield and yield parameters were statistically considerably higher in the foliar nutrition variant than in the control variant. It is necessary to promote the introduction of agrotechnical measures to increase buckwheat production, aimed at increasing buckwheat yield. Improving productivity will be an important trade off between food security, population growth, better land use in the face of climate change, and increased production.
Ключови думи: buckwheat; climate change; foliar nutrition; therapeutic effects against chronic illnesses; variety Novosadska
Цитиране: Popović, V., Vasileva, V., Filipović, A., Rajičić, V., Vujović, S., Golijan Pantović, J., & Ljubičić, N. (2025). Improvement of buckwheat production in conditions of climate change. Bulgarian Journal of Crop Science, 62(1) 102-112.
Литература: (click to open/close) | Ahmed, A., Khalid, N., Ahmad, A., Abbasi, N. A., Latif, M. S. Z., & Randhawa, M. A. (2014). Phytochemicals and biofunctional properties of buckwheat: A review. Journal of Agricultural Science, 152, 349–369. Aksoy, A. G., Boran, P., Karakoc‐Aydiner, E., Gokcay, G., Tamay, Z. U., Devecioglu, E., Baris, S., & Ozen, A. (2021). Prevalence of allergic disorders and risk factors associated with food allergy in Turkish preschoolers. Allergologia et immunopathologia, 49(1), 11–16. Astrini, N., Rakhmawati, T., Sumaedi, S., & Bakti, I. (2020). Identifying objective quality attributes of functional foods. Quality Assurance and Safety of Crops & Foods, 12(2), 24–39. Ballini, G., Gavagni, C., Guidotti, C., Ciolini, G., Liccioli, G., Giovannini, M., Sarti, L., Ciofi, D., Novembre, E., & Mori, F. (2021). Frequency of positive oral food challenges and their outcomes in the allergy unit of a tertiary‐care pediatric hospital. Allergologia et Immunopathologia, 49(3), 120–130. Bastida, J. A., Piskuła, M. K., & Zieliński, H. (2015). Recent advances in the development of gluten‐free buckwheat products. Trends in Food Science & Technology, 44, 58–65. Begemann, J., Ostovar, S., & Schwake‐Anduschus, C. (2021). Facing tropane alkaloid contamination in millet–analytical and processing aspects. Quality Assurance and Safety of Crops & Foods, 13(2), 79–86. Bhinder, S. B., Kaur, A., Singh, M. P., Yadav, M. P., & Singh, N. (2020). Proximate composition, amino acid profile, pasting and process characteristics of flour from different Tartary buckwheat varieties. Food Research International, 130, 108946. Bobkov, S. (2016). Biochemical and technological properties of buckwheat grains. In Zhou M. (Ed.), Molecular breeding and nutritional aspects of buckwheat. pp. 423–440. Academic Press. Brand, P. L., Brohet, R. M., Schwantje, O., & Dikkeschei, L. D. (2022). Association between allergen component sensitisation and clinical allergic disease in children. Allergologia et Immunopathologia, 50(2), 131–141. Gairhe, J. J., Bhusal, T. N., & Neupane, H. (2015). Influence of priming and nitrogen on growth behavior of buckwheat (Fagopyrum esculentum) in rainfed condition of mid‐hill in Nepal. Journal of the Institute of Agriculture and Animal Science, 34, 47–54. Gairhe J. J., Bhusal T. N., & Neupane H. (2015). Influence of priming and nitrogen on growth behavior of buckwheat (Fagopyrum esculentum) in rainfed condition of midhill in Nepal. J. Inst. Agric. Anim. Sci. 33-34: 47-54. Giménez‐Bastida, J. A., Piskula, M. K., & Zielinski, H. (2015). Recent advances in processing and development of buckwheat derived bakery and non‐bakery products‐a review. Polish Journal of Food and Nutrition Sciences, 65(1), 9–20. Dolijanovic Z., Oljaca S., Kovacevic D., Simic M., Dragicevic V., & Popović V. (2015). Weednes of maize and soybean inter-cropping system. Herbologija, DOI 10.5644/Herb.15.1.01, B&H, ISSN 1840-0809, 15, 1. 1-10. Đurić N., Glamočlija Đ., Janković S., Dozet G., Popović V., Mladenopvić Glamočlija M., & Cvijanović V. (2018): Alternative cereals in Serbia in the system of suistainable agricultural production. Agronomski glasnik, Croatia, 80(6), 369-384. https://doi.org/10.33128/ag FAOSTAT statistics, 2019. Online database. http://faostat3.fao.org Ferreira, D. S., Rocha, J. C. B., Arellano, D. B., & Pallone, J. A. L. (2022). Discrimination of South American grains based on fatty acid. Quality Assurance and Safety of Crops & Foods, 14(3), 30–42. Fotschki, B., Juśkiewicz, J., Jurgoński, A., Amarowicz, R., Opyd, P., Bez, J., Muranyi, I., Petersen, I. L., & Laparra Llopis, M. (2020). Protein‐rich flours from quinoa and buckwheat favourably affect the growth parameters, intestinal microbial activity and plasma lipid profile of rats. Nutrients, 12(9), 2781. Ikanović J., Rakić S., Popović V., Janković S., Glamočlija Ð., & Kuzevski J. (2013). Agro-ecological conditions and morpho-productive properties of buckwheat. Biotechnology in Animal Husbandry. Belgrade, 29 (3), 555-62. https://doi.org/10.2298/BAH1303555I Jing, R., Li, H. Q., Hu, C. L., Jiang, Y.P., Qin, L.P., & Zheng, C. J. (2016). Phytochemical and pharmacological profiles of three Fagopyrum buckwheats. International Journal of Molecular Sciences, 17(4): 589. Kaluđerski, G., & Filipović, N. (1998). Methods of analysis grain quality. Novi Sad: University of Novi Sad. Kolarić, L., Popović, V., Živanović, L., Ljubičić N., Stevanović P., Šarčević Todosijević Lj., Simić, D., & Ikanović, J. (2021). Buckwheat yield traits response as influenced by row spacing, nitrogen, phosphorus, and potassium management. Agronomy, 11(12), 2371. Lee, L. S., Choi, E. J., Kim, C. H., Sung, J. M., Kim, Y.B., Seo, D. H., & Park, J. D. (2016). Contribution of flavonoids to the antioxidant properties of common and Tartary buckwheat. Journal of Cereal Science, 68, pp. 181–186. Małgorzata, S., Georgios, K., & Henryk, Z. (2018). Sensory analysis and aroma compounds of buckwheat containing products: A review. Critical Reviews in Food Science and Nutrition, 58(11), 1767–1779. Manikantan, M., Mridula, D., Sharma, M., Kochhar, A., Prasath, V. A., Patra, A., & Pandiselvam, R. (2022). Investigation on thin‐layer drying kinetics of sprouted wheat in a tray dryer. Quality Assurance and Safety of Crops & Foods, 14(SP1), 12–24. Martin, J. H., Leonard W. H., & Stamp. D. L. (1976). Principles of field crop production. USA: Macmillan Publishing Co. Mattila, P.H., Pihlava, J.M., Hellström, J., Nurmi, M., Eurola, M., Mäkinen, S., & Pihlanto, A. (2018). Contents of phytochemicals and anti‐nutritional factors in commercial protein‐rich plant products. Food Quality and Safety, 2(4), 213–219. Mir, N. A., Gul, K., Riar, C. S. (2014). Techno functional and nutritional properties of gluten‐free cakes prepared from water chestnut flours and hydrocolloids. Journal of Food Processing and Preservation, 39, pp. 978–984. Mir, N. A., Riar, C. S., & Singh, S. (2018). Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends in Food Science & Technology, 75, pp. 170–180. Mondal, S., Ashfaquddin, M. D., Bhar, K., Pradhan, N. K., Anjum, M. D., & Molla, S. (2021). Silver hull buckwheat (Fagopyrum esculentum Moench) is a part of nature that offers best health and honour. Discovery Phytomedicine, 8(4), 137–159. Popović, V., Sikora, V., Ugrenovic, V., & Filipovic, V. (2017). Status of buckwheat (Fagopyrum esculentum) production in the worldwide and in the Republic of Serbia. Chapter 9. In. Rural Communities in the Global Economy. Beyond The Classical Rural Economy Paradigms, Editors: I. Nicolae, I. de los Rios and A. Jean Vasile. Nova Science Publishers, New York; USA; ISBN: 978-1-53610-255-0 (e-book); ISBN: 978-1-53610-238-3; 179-199. 1-325; Popović, V., Jovović, Z., Marjanović-Jeromela, A., Sikora, V., Mikić, S., Bojovic, R., & Šarčević Todosijević, Lj. (2020). Climatic change and agricultural production. GEA (Geo Eco-Eco Agro) International Conference, Podgorica; 27-31.05.2020, http://www.gea.ucg.ac.me, p. 160-166. Popović, V., Burić, M., Mihailović, A., Aćimić-Remiković, M., Vukeljić, N., Batrićević, M., Petrović, B. (2022). Medicinal properties of buckwheat products and honey in compliance with food safety regulatory requirements. Journal of Agricultural, Food and Envoronmental Sciences, 76, 3, pp. 16-24. Popović,V., Bošković, J., Đurić, N., Ikanović, J., Filipović, V., Ljubičić, N., & Šarčević Todosijević, Lj. (2023). Honey-Bearing plants and the influence of pesticides on bees and honey production. Biotehnologija i savremeni pristup u gajenju I oplemenjivanju bilja. 2/11/2023 Smederevska Palanka, 259-268. ISBN 978-86-89177-06-0 Rajbhandari, B. P., & Bhatta. G. D. (2008). Food crops: agro ecology and modern agro techniques. Kathmandu: Himalayan College of Agricultural Sciences and Technology. Rafiq, S. I., Muzaffar, K., Rafiq, S. M., Saxena, D., & Dar, B. (2021). Underutilized horse chestnut (Aesculus indica) flour and its utilization for the development of gluten‐free pasta. Italian Journal of Food Science, 33(SP1), 137–149. Raguindin, P. F., Itodo, O. A., Stoyanov, J., Dejanovic, G. M., Gamba, M., Asllanaj, E., Minder, B., Bussler, W., Metzger, B., Muka, T., Glisic, M., & Kern, H. (2021). A systematic review of phytochemicals in oat and buckwheat. Food Chemistry, 338, 127982. Rodríguez, J. P., Rahman, H., Thushar, S., & Singh, R. K. (2020). Healthy and resilient cereals and pseudo‐cereals for marginal agriculture: Molecular advances for improving nutrient bioavailability. Frontiers in Genetics, 11(49), 1–29. Sando, W. J. (1956). Buckwheat culture. USDA Farmers Bul., 2095 Sofi, S. A, Ahmed, N., Farooq, A., Rafiq, S., Zargar, S. M., Kamran, F., Dar, T. A., Mir, S. A., Dar, B. N, Mousavi Khaneghah, A. (2022). Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten-free products: An updated overview. Food Sci Nutr. 11(5), 2256-2276. doi: 10.1002/fsn3.3166. Srisuwatchari, W., Piboonpocanun, S., Wangthan, U., Jirapongsananuruk, O., Visitsunthorn, N., & Pacharn, P. (2020). Clinical and in vitro cross‐reactivity of cereal grains in children with IgE‐mediated wheat allergy. Allergologia et Immunopathologia, 48(6), 589–596. Thomson, A. M., Brown, R. A., Rosenberg, N. J., Izaurralde, R. C., & Benson, V. (2005). Climate change impacts for the conterminous USA: an integrated assessment. Part 3. Dryland production of grain and forage crops. Climate Change, 69, 43-65. Vassilopoulou, E., Vardaka, E., Efthymiou, D., & Pitsios, C. (2021). Early life triggers for food allergy that in turn impacts dietary habits in childhood. Allergologia et Immunopathologia, 49(3), 146–152. Vojtiskova, P., Kmentova, K., Kuban, V., Kracmar, S. (2012). Chemical composition of buckwheat plant (Fagopyrum esculentum) and selected buckwheat products. Journal of Microbiology, Biotechnology and Food Sciences, 1, 1011–1019. White, J. W., F.J. Holben and A. C. Richer. (1941). Experiments with buckwheat. Pa. Agr. Exp. Sta. Bul. p 403. Xu, H. R., Zhang, Y. Q., Wang, S., Wang, W. D., Yu, N. N., Gong, H., & Ni, Z. Z. (2022). Optimization of functional compounds extraction from Ginkgo biloba seeds using response surface methodology. Quality Assurance and Safety of Crops & Foods, 14(1), 102–112. Zhang, Z. L., Zhou, M. L., Tang, Y., Li, F. L., Tang, Y. X., Shao, J. R., Xue, W.T., Wu, Y. M. (2012). Bioactive compounds in functional buckwheat food. Food Research International, 49, 389–395. Zhu, F. (2016). Chemical composition and health effects of Tartary buckwheat. Food Chemistry, 203, 231–245. Zhou, X., Hao, T., Zhou, Y., Tang, W., Xiao, Y., Meng, X., & Fang, X. (2015). Relationships between antioxidant compounds and antioxidant activities of Tartary buckwheat during germination. Journal of Food Science and Technology, 52(4), 2458–2463. https://doi.org/10.1007/s13197-014-1290-1 Zhou, X., Wen, L., Li, Z., Zhou, Y., Chen, Y., & Lu, Y. (2015). Advance on the benefits of bioactive peptides from buckwheat. Phytochemical Review, 14(3), 381–388. Yilmaz, H. Ö., Ayhan, N. Y., & Meriç, Ç. S. (2020). Buckwheat: A useful food and its effects on human health. Current Nutrition & Food Science, 16(1), 29–34. Zou, L., Wu, D., Ren, G., Hu, Y., Peng, L., Zhao, J., & Xiao, J. (2021). Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat (Fagopyrum tataricum). Critical Reviews in Food Science and Nutrition, 1–17. https://doi.org/10.1080/10408398.2021.1952161
|
|
| Дата на публикуване: 2025-02-27
Свали пълен текст